New Tools Beget Revolutions
Volume, Velocity, Variety

- Clickstream/Page views/Web transactions
- Web links/Blog references/Facebook
- Google/Bing/Yahoo Searches
- Email messages
- Mobile phone/GPS/Location data
- ERP/CRM/SCM transactions
- RFID (Radio Frequency Identification), Bar Code Scanner Data
- Real-time machinery diagnostics/engines/equipment
- Stock market transactions
- Twitter feeds
- Wikipedia updates
- Etc....

→ “Nanodata” and “Nowcasting”
A Culture Clash

“I think we, as an industry, do a lot of talking... We expect to have open dialogue. It’s a culture of lunches.

Amazon doesn’t play in that culture. [It has] an incredible discipline of answering questions by looking at the math, looking at the numbers, looking at the data. . . .

That’s a pretty big culture clash with the word-and-persuasion-driven lunch culture, the author-oriented culture.”

-- Madeline McIntosh, Random House’s President of Sales & Operations

Quoted In “Publish or Perish,” New Yorker, 4/26/10
Data vs. HiPPOs

- Wine
- Chemistry
- Insurance
- Underwriting
- Housing
- Sales

Data: Google Search Queries

- There are over 113 Billion search queries worldwide each month
 - 22% were in North America, 67% via Google. Increase of 41% annually.
 - Over 100 searches per searcher per month
 - Each query is a window into someone’s intentions or interests.
 - Can we detect underlying consumer beliefs, perhaps “irrational exuberance” through online search data?
 - Shades of Montgomery Marvin and Hari Seldon
 - *Google Insights for Search* provides weekly or monthly reports on the query volume of any search phrase.
 - Related tool is *Google Trends*
 - Can be drilled to country and state levels
 - Continuously improving it: Now available for some MSAs
 - Collect query data since Jan 1, 2004
In the September, 2009 draft of NBER paper (submitted for workshop), we used our model to estimate sales in Q3 2009.

We predicted the average home sales for the entire nation would **increase by 6.4%**.

The National Association of Realtors predicted an **8.1% increase**.

On Nov. 24, 2009, the housing sales for Q3 were announced ...

... as **increasing 6.1%**.

* Nanodata produced a 66% improvement over the baseline model

The Plural of Anecdote is Data

(Source: Brynjolfsson and Hitt)
Data Driven Decision-makers are Winning

- Data-Driven Decision-makers: 4% higher productivity

- Data-Driven Decision-makers: 6% greater profitability and 50% higher market value from IT

Source: Brynjolfsson, Hitt and Kim, 2011

Data-Driven Decision-Making (DDD)

1. How are decisions made for the creation of a new product or service? (1 to 5 scale: Experience and expertise=1, Data=5)

2. To what extent do the following statement describe the work practices and environment of your entire company

 2a. We depend on data to support our decision making (1: Describes not at all, 5: Completely describes)

 2b. We have the data we need to make decisions (1: Describes not at all, 5: Completely describes)

SOURCE 2009 Digital Advantage survey by MIT CDB and McKinsey
Data-driven decision making I:
Typical basis for a new product/service

Percent of respondents

<table>
<thead>
<tr>
<th>Industry</th>
<th>Data</th>
<th>Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minerals, Oil & Gas, Utilities, and Construction</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>25</td>
<td>38</td>
</tr>
<tr>
<td>Wholesale/Retail Trade, Transport, Accommod./Food</td>
<td>31</td>
<td>6</td>
</tr>
<tr>
<td>Information</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Finance and Insurance</td>
<td>71</td>
<td>8</td>
</tr>
<tr>
<td>Professional and Other Services</td>
<td>8</td>
<td>19</td>
</tr>
</tbody>
</table>

The Effect of DDD on Productivity

\[
\ln(Sales)_{it} = \beta_0 + \beta_1 \ln(Materials)_{it} + \beta_2 \ln(Physical Capital)_{it} + \\
\beta_3 \ln(IT Labor)_{it} + \beta_4 \ln(Non-IT Labor)_{it} + \beta_5(DDD)_{i} + \text{Other controls}
\]

\(i\): firm
\(t\): year (2005-2009)
Sales, Physical Capital, Employees from Compustat
IT Labor from a job-posting site (Tambe and Hitt, 2008)
Non-IT Labor = Employees – IT Labor
Other controls = 1.5 digit NAICS industry, year, employees’ human capital
(importance of typical employee’s education, % of employees using PC/Emails, and/or Avg. workers’ wage)
Productivity and DDD: OLS and IV

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDD</td>
<td>0.0475**</td>
<td>0.064*</td>
</tr>
<tr>
<td>Ln (Material)</td>
<td>0.501***</td>
<td>0.504***</td>
</tr>
<tr>
<td>Ln (Physical Capital)</td>
<td>0.0991***</td>
<td>0.0979***</td>
</tr>
<tr>
<td>Ln (Non-IT Employee)</td>
<td>0.224***</td>
<td>0.224***</td>
</tr>
<tr>
<td>Ln (IT-Employee)</td>
<td>0.0852***</td>
<td>0.0844***</td>
</tr>
<tr>
<td>Industry and Year Control</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Overid Test:</td>
<td></td>
<td>0.68</td>
</tr>
<tr>
<td>Hansen’s J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hausman Test</td>
<td></td>
<td>0.58</td>
</tr>
</tbody>
</table>

Robust standard errors were clustered around firms.

***p<0.01, **p<0.05, *p<0.1. Industry classification was based on NAICS 2 digit for manufacturing and 1 digit for other industries.

DDD also improved the other performance measures

1. Return on Assets
 • Pretax Income per total assets
2. Return on Equity
 • Pretax Income per equity
3. Asset Utilization
 • Output per total assets
4. Market Value
 • Market to Book Ratio
Big Data: The Catalyst for Four Drivers of Innovation

- Measure
- Experiment
- Share
- Replicate

Synergies Amplify The Benefits

A *new kind of R&D*
The Future of Prediction

The Falling Costs of Measurement, Experimentation, Sharing and Replication

Average Transistor Price

Copyright © 2011 Erik Brynjolfsson
The Internet of Things

By 2015 there will be 1 trillion sensors linking the physical and digital worlds merging to become an “Internet of Things”

To learn more about related research, please visit:

http://digital.mit.edu

Big Data: http://digital.mit.edu/bigdata

Erik’s papers: http://digital.mit.edu/erik