Electronic Sales Strategies for Time-Sensitive Markets

Jérémie Gallien
Operations Management Group,
MIT Sloan School of Management

jgallien@mit.edu
Practical Motivation

• On June 1st, a company replaces 4 identical NC machine-tools with a new production line

• Buyers’ willingness to pay for each varies between $170,000 and $230,000

• On average, potential buyers come up every 3 days

• Future revenues are discounted as historical ROI is 20% p.a.

How should the company sell its old machines?
Example of Sales Strategies

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company runs a multi-unit auction on eBay for 30 days</td>
<td>Company announces a price of $190,000 for each machine</td>
</tr>
<tr>
<td>• On average, 10 bidders in the auction</td>
<td>• Each sale generates $190k</td>
</tr>
<tr>
<td>• On average, the sale price for each machine will be $199k</td>
<td>• Gross revenue is $760k</td>
</tr>
<tr>
<td>• Gross revenue of 4 x $199k = $798k only available on June 30th</td>
<td>• On average:</td>
</tr>
<tr>
<td></td>
<td>» 1st sale on June 9th</td>
</tr>
<tr>
<td></td>
<td>» 2nd sale on June 18th</td>
</tr>
<tr>
<td></td>
<td>» 3rd sale on June 27th</td>
</tr>
<tr>
<td></td>
<td>» 4th sale on July 5th</td>
</tr>
<tr>
<td>• The Expected Discounted Revenue is $786k</td>
<td>• The Expected Discounted Revenue is $755k</td>
</tr>
</tbody>
</table>
Research Questions

• What is the selling strategy maximizing Expected Discounted Revenue?

• How to set the parameters of this strategy (e.g. bidding period, fixed sale price) optimally?

• How does the optimal strategy compare with other possible strategies?

• In a given industrial environment, which strategy is more robust?
Talk Outline

1. Analysis
2. Numerical Experiments
3. Conclusion & Managerial Insights
Dynamic Mechanism Design

Bidder i has private valuation

Bidders arrive in sequence

Market opens

Bidder i arrives at t_i

Transaction occurs (Allocation, Payment)

Participants are affected by the transaction timing

What is the optimal mechanism (selling time, allocation, payment) in this dynamic environment?
Problem Formulation

Seller with discount factor α opens market at $t = 0$

Bidder i arrives at t_i

Transaction occurs at S (endogeneous)

Arrival Process is Renewal

Bidder i has discount factor α and type $\varphi_i = (v_i, t_i)$

What is the mechanism:

$\psi = (\text{Stopping Time } S, \text{ Allocation } q, \text{ Payment } y)$

Maximizing seller’s objective $\mathbb{E}[\alpha^S \sum_i y_i]$

Subject to:

Each bidder i maximizes $\mathbb{E}[\alpha^{S - t_i} (q_i v_i - y_i) | v_i]$
Methodology & Assumptions

• Buyers are self-interested ➔ Equilibrium/Game Theoretic Analysis

• Buyers’ private valuations are independent and drawn from the same known distribution

• Model investigates unit demand case

• The seller and buyers discount factors are the same

• All data except individual valuations is public knowledge
Optimal Single Item Mechanism

• Optimal sales strategy derived from this model:

 Set a fixed price p^* such that:

 $$p^* \leq \frac{1 + F + U}{f + u} \quad \text{and} \quad p^* \geq \frac{G(1 + F + W)}{1 + G(1 + F + W)}$$

• p^* depends on the arrival rate and discount factor…
Optimal Multiple Items Mechanism

Optimal sales strategy when selling $K>1$ identical items:

Set an increasing sequence of prices:

$p^{*1} < p^{*2} < p^{*3} < ... < p^{*K}$

- Price for the first sale
- Price for the last sale

Model provides easily implementable formulas for price computation

Temporal incentive compatibility effect
Performance Benchmark

- Online auction model (e.g. eBay):

 Reserve price p_0 is set

 Market opens

 Time

 Auction ends at L

 Ordering of valuations $v_1 < v_2 < \ldots < v_{N-1} < v_N$

 Revenue $R = \max(v_{N-1}, p_0)$ if $v_N > p_0$

 Expected Discounted Revenue $\alpha^L \mathbb{E}[R]$

- In our experiments, p_0 and L are set optimally
Machine-Tool Sale Continued

- In the NC-machine tool sale example, **optimal sales strategy** is
 \[(p^*_1; p^*_2; p^*_3; p^*_4) = (221.2k; 222.3k; 223.7k; 225.5k)\]
 \[\text{EDR} = $866k\]

- The best **single price** strategy is \(p = $222.98k\)
 \[\text{EDR} = $864k\]

- The best **auction** strategy is \(L = 90\text{ days} ; p_0 = $200k\)
 \[\text{EDR} = $841k\]
Discounted Revenue Comparison

Data: Valuations U[0,10], Arrivals Poisson(1)
Mechanism Robustness

Data: Valuations $U[0,10]$, Arrivals Poisson(1)
Data: Valuations U[0,10], Arrivals Poisson(1)
Experimental Summary

<table>
<thead>
<tr>
<th>Value of Time</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Discounted Revenue</td>
<td>Fixed Price -</td>
<td>Fixed Price ++</td>
</tr>
<tr>
<td>Parameter Robustness</td>
<td>Auction++</td>
<td>Auction -</td>
</tr>
<tr>
<td>Analysis Requirements/Flexibility</td>
<td>Auction+</td>
<td>Fixed Price +</td>
</tr>
</tbody>
</table>

Missing dimension: Number of items sold!
Conclusion

• Mathematical model for setting prices in time-sensitive market environments:

\[p \geq \frac{1}{f} \frac{F}{\Omega} \quad \text{and} \quad p \geq \frac{G}{1 + G} \frac{F}{\Omega} \]

• In practical implementations, robustness must be considered carefully

Future work:
- Multi-unit benchmark
- Dynamic learning/Adaptive Pricing
- …
Impatient Bidders

• The impatient bidders problem is obtained from the previous formulation by adding a constraint

• The optimal mechanism OFP we derived is also feasible for this smaller feasible space

The mechanism OFP is also optimal with impatient bidders!!!
Dynamic Model: Discounted Revenue Comparison

Data: Valuations U[0,10], Arrivals Poisson(1)
Revenue Volatility

Data: Valuations $U[0,10]$, Arrivals Poisson(1)
Mechanism Robustness 1

Data: Valuations U[0,10], Arrivals Poisson(1)
Robustness Test Range: Parameter +/- 5%
Me Mechanism Robustness 2

Data: Valuations $U[0,10]$, Arrivals Poisson(1)
Robustness Test Range: Parameter +/- 5%
Conclusion

• Optimal dynamic sale policy in closed form:

\[p \left(\frac{1}{f_p} \right) \text{ or } p \left(\frac{G_p F_p}{1 + G_p F_p} \right) \]

• But mechanism choice is a bit more subtle in practice.

Future work:
- Multi-unit benchmark (B2C)
- Different time discount factors
- Dynamic learning/Adaptive pricing
Independent Private Values model: common knowledge is that v_1, v_2, v_3, \ldots are independent and follow the same distribution.
Background: Revelation Principle

• Any market mechanism can be stated as:

\[
\text{Strategy Space} \rightarrow \text{Outcome Space} \quad s \rightarrow [q(s), y(s)]
\]

• Bidders will implicitly use strategy functions:

\[
\text{Type Space} \rightarrow \text{Strategy Space} \rightarrow \text{Outcome Space} \\
\varphi \rightarrow s(\varphi) \rightarrow [q(s(\varphi)), y(s(\varphi))]
\]

• Consider now the following direct mechanism:

\[
\text{Type Space} \rightarrow \text{Outcome Space} \\
\varphi \rightarrow [q(s(\varphi)), y(s(\varphi))]
\]

Without loss of generality, we can restrict our search to Direct Revelation Mechanisms!
Model Formulation

Seller with discount factor α opens market at $t = 0$

Bidder i arrives at t_i

Transaction occurs at S (endogeneous)

Arrival Process is Renewal

Bidder i has discount factor α and type $\varphi_i = (v_i, t_i)$

v_i follows an Independent Private Values model with distribution $(f(.), F(.))$

Inter-arrival distribution x has transform $G(z) = E[z^x]$
The Mechanism Design Problem

- Define $S \min \left\{ n \nvdash 1 : \bigotimes_{i=1}^{n} q_i^n \bigotimes 1 \right\}$ (stopping time)

 $U_i \nvdash v_i \nvdash E \left[\bigotimes_{i=1}^{n} q_i^S \bigotimes y_i^S \bigotimes v_i \right]$ (utility of bidder i)

- Our mechanism design problem can be stated as:

Maximize:
$U_0 \nvdash E \left[\bigotimes_{i=1}^{n} y_i^S \bigotimes 1 \right]$

Subject to:
(IR) \begin{cases}
U_i \nvdash v_i \nvdash 0 \\
\text{for all } i \nvdash 1 \text{ and } v_i \nvdash V
\end{cases}

(IC) \begin{cases}
U_i \nvdash v_i \nvdash E \left[\bigotimes_{i=1}^{n} q_i^S \bigotimes y_i^S \bigotimes v_i \right] \\
\text{for all } i \nvdash 1 \text{ and } v_i \nvdash V^2
\end{cases}
Theorem: An optimal solution to the problem:

\[
\text{Maximize } U_0 \prod_s \mathbb{E} \left[\prod_i s_i y_i^s \right] \\
\text{Subject to (Individual Rationality)} \\
\text{(Incentive Compatibility)}
\]

can be obtained by solving for \(q \) and \(S \) in

\[
\text{Maximize } U_0 \prod_s \mathbb{E} \left[\prod_i s_i \left(v_i \mathbb{E} \left[\frac{1_{A_i \cup U}}{f_i U} \right] q_i^s \right) \right] \\
\text{and set } y \text{ such that:}
\]

\[
y_i^s \prod v_i q_i^s \prod v_i E \left[\prod_i s_i \right], v^s \prod v \rightarrow v
\]
Dynamic Programming Solution

- The maximization of
 \[U_0 \mathbb{E} \max_{s \in S} \left(\mathbb{E}_i \left(v_i \frac{1_{\Theta_i \in \Theta}}{f_i} \right) q_i \right) \]
 is equivalent to solving the following infinite horizon discounted optimal stopping problem (dynamic program):

 \[
 \begin{cases}
 J \max_{\Theta, \Theta, w} \quad \Theta, \Theta, w \\
 g(\Theta, w) \max_{\Theta, w} \quad \Theta, w \\
 w \not\in v \frac{1_{\Theta \in \Theta}}{f} \\
 \end{cases}
 \]
 \[(\text{Bellmann equation})\]
 \[(\text{state equation})\]
 \[(\text{random noise})\]

- Its one-look ahead stopping set
 \[S \uparrow x : x \in \Theta, \Theta, w \]
 is optimal!

In the original problem, the optimal mechanism is to sell for a price of \(p^* \) to the first bidder \(S \) such that \(v_S \uparrow p^* \), where \(p^* \) satisfies

\[p^* \leq \frac{1_{\Theta^* \in \Theta}}{f} \leq p^* \frac{\Theta^* \uparrow \Theta^* \Theta^* \Theta^* \Theta^* \Theta^*}{1_{\Theta^* \in \Theta} \Theta^* \Theta^* \Theta^* \Theta^* \Theta^*} \]
Static Mechanism Benchmark

Data: Valuations U[0,10]