“Listening In” to Find and Explore New Combinations of Customer Needs

Glen L. Urban

and

John R. Hauser

September 9, 2003

Glen L. Urban is the David Austin Professor of Marketing, Sloan School of Management, Massachusetts Institute of Technology, E56-305, 38 Memorial Drive, Cambridge, MA 02142, (617) 258-0679, fax (617) 253-7597, glurban@mit.edu.

John R. Hauser is the Kirin Professor of Marketing, Sloan School of Management, Massachusetts Institute of Technology, E56-314, 38 Memorial Drive, Cambridge, MA 02142, (617) 253-2929, fax (617) 253-7597, jhauser@mit.edu.

This research was supported by the Sloan School of Management, the eBusiness Center, the Center for Innovation in Product Development at M.I.T., and the General Motors Corporation. We gratefully acknowledge the contributions of our industrial collaborators, research assistants, and faculty colleagues: Vince Barabba, Iakov Bart, Ahmed Benabadji, Rupa Bhagwat, Brian Bower, Brian Chan, Hann-Ching Chao, Mitul Chatterjee, Shyn-Ren Chen, Thomas Cheng, Stanley Cheung, Frank Days, Ken Dabrowski, Benson Fu, Salman Khan, Christopher Mann, Rami Musa, Joseph Kim, Ken Lynch, Bill Qualls, James Ryan, Bilal Shirazi, Jonathon Shoemaker, Fareena Sultan, Andy Tian, Xingheng Wang, and Irene Wilson. This paper has benefited from presentations at the Marketing Science Conferences in Wiesbaden Germany and in Edmonton Canada, the Marketing Science Conference on “New Methods for New Products, the MIT Marketing Workshop, the New England Marketing Conference, and the Stanford Marketing Workshop. Related information is available at mitsloan.mit.edu/vc and ebusiness.mit.edu.
“Listening In” to Find and Explore New Combinations of Customer Needs

Abstract

By “listening in” to ongoing dialogues between customers and web-based virtual advisors (e.g., Kelley Blue Book’s Auto Choice Advisor) we identify new product opportunities based on new combinations of customer needs. These data are available at little incremental cost and provide the scale necessary for complex products (e.g., 148 trucks and 129 customer needs in our application). We describe and evaluate the methodologies with formal analysis, Monte Carlo simulation (calibrated on real data), and a “proof-of-concept” application in the pickup-truck category (over 1,000 web-based respondents). The application identified opportunities for new truck platforms worth approximately $2.4-3.2 billion and $1-2 billion, respectively.
"Listening In" to Find and Explore New Combinations of Customer Needs

Identifying new platform opportunities is one of the most important roles of market intelligence. Monitoring [web-based advisors] provides a rich source of observed in-market customer behavior that complements our current inquiry tools which, by their nature, are forced to ask customers either to state their intentions before they are actually in the market or to remember after the purchase what they did (and why) when shopping for a vehicle. No form of inquiry is perfect, however, whatever its limitations, the currency [of web-based advisors] presents a valuable source of market understanding that is already streaming by and is of great value when used appropriately.

Vince Barabba, General Motors
General Manager of Corporate Strategy and Knowledge Development (responsible for overseeing GM’s New Business Development Network)

Unmet Combinations of Customer Needs Represent New Opportunities

The advent of Internet has given customers more information about products in diverse industries such as travel, health, autos, computers, home entertainment, and financial services. For example, the fraction of people using the Internet for information and advice is large in travel (70%), health (56%), and automobiles (62%). Monitoring Internet searches, undertaken by potential customers in their own vested interests, has the potential to reveal new opportunities, new “fishing grounds,” for new products and product platforms. In this paper we explore one set of methodologies to use this information to identify new-product opportunities. While our application is drawn from the automotive industry, the basic concepts are applicable for complex products in both consumer and business-to-business markets, e.g., high-end copiers, home entertainment centers, and financial services (Ulrich and Eppinger 1995).

Automobiles and trucks are indeed complex products. The investment for a new automotive platform might require as much as $1-to-2 billion and 1,200 person-years of investment. Such investments are justified by the scale of the market. For example, with approximately 150 trucks on the market, the average truck needs less than one percent of the marketplace to be profitable; each share point is worth $800 million in annual revenue.

Most automotive platforms are redesigns to provide known combinations of customer benefits (“needs”). However, long-term survival requires that new opportunities be identified. For example, in the late 1980s, through a combination of qualitative focus groups and quantitative perceptual mapping studies, a new opportunity was identified for luxury vehicles that could haul moderate loads. Today this luxury SUV segment is one of the most profitable automotive segments. Another example came from leading-edge users. In the 1960s teenagers and young
adults were customizing inexpensive vintage Fords with V8 engines – Ford recognized this opportunity for inexpensive sporty cars with large engines. The first production car in this “pony” segment, the 1964½ Mustang, sold 420,000 units in the first year ($10 billion at today’s prices, classicponycars.com/history.html). The 1983 Chrysler minivans provide a third example. Growing families needed a vehicle that could carry a 4’ x 8’ sheet of plywood, fit easily in customers’ garages, drive like a passenger car, have a side door for small children, and incorporate a sedan-like liftgate for shopping. Chrysler sold 210,000 units in the first year and dominated this new segment for years to come (allpar.com/model/m/history.html). These are but some of the many automotive examples where profitable new platforms filled previously unrecognized (by the auto industry) combinations of consumer needs. The firms that identified first these new combinations of customer needs were able to profitably exploit the opportunities for many years.

Finding new combinations of customer needs for complex products is no small challenge. For example, trucks fulfill between 100-150 distinct customer needs, more if we include sound and other subsystems. Because of the sheer magnitude of combinatorial combinations (e.g., 10^{52} in our application), existing products fulfill a tiny fraction of the potential combinations. Complex products require large samples. For example, even if we had hypotheses about a new combination of customer needs, we might still need detailed information on almost 500 or more respondents to be comfortable that a needs-combination segment is worth further investigation. Because multiple needs define a segment, it is not unusual for sample sizes in the automotive industry to approach 10,000 for targeted research and 100,000 for general searches. General Motors (GM) alone spends tens of millions of dollars each year searching for new needs’ combinations and studying needs’ combinations once identified. Some studies are in the $500,000-to-$1 million range. Automotive firms desire methodologies that are more cost-effective and that can be run continuously to identify new needs’-combination opportunities as soon as they occur.

In this paper we propose methodologies that provide a practical means to find combinations of customer needs that represent profitable new opportunities. These methodologies exploit new data, click-streams from virtual advisors, that are available at little incremental cost yet provide the scale (both number of products and number of needs) that is necessary to find opportunities in complex-product categories. For example, one virtual advisor, sponsored by GM, J. D. Power, Kelley Blue Book, and Car Talk and based, in-part, on the methodologies in this paper, has approximately 500,000 annual visitors.
The new data are obtained by “listening in” to ongoing “dialogues” created when customers use the Internet to search for information and advice about automotive purchases. These data are incentive compatible – customers are seeking advice and have an incentive to reveal their needs. The virtual advisors generating these data are updated often to include new products and new customer benefits (needs), providing evolving data with which to identify new combinations of needs as soon as customers express those needs. We focus on the truck market to illustrate the methods. The methodologies extend readily to other complex-product categories such as travel, medical, and office equipment.

We “listen in” by combining multiple stages: a Bayesian virtual advisor to obtain the data, an opportunity trigger to identify when existing trucks do not fulfill desired combinations of needs, a virtual engineer to explore and clarify the identified opportunity, a design palette to explore how customers would design their own trucks, and a clustering procedure to estimate the (rough) size of the segment of customers who desire these new combinations of needs. In this paper we illustrate each stage, examine internal validity with Monte Carlo analyses, and provide an example based on a sample of over 1,000 respondents. This “proof-of-concept” research was run in parallel with existing methods yet identified a key segment at a much lower cost. It also suggested a segment, still being explored, that existing methods may have missed. We begin by discussing how “listening in” complements existing methods.

Existing Methods to Identify Profitable Combinations of Customer Needs

With so much as stake, strategic marketing and marketing research groups invest heavily in identifying new opportunities. They speak to leading edge users, maintain and monitor user groups, sponsor special racing events, monitor chat rooms and user groups, and use a variety of qualitative and ethnographic methods (Barabba 2003; Barabba and Zaltman 1991; Griffin and Hauser 1993; Gutman 1992). For example, automotive firms invest heavily in quantitative methods such as conjoint analyses, AIO studies (activities, interests, and opinions), and large-scale “clinics” in which customers view and react to prototypes and concepts (Green and Srinivasan 1990; Plummer 1974, Urban, Weinberg and Hauser 1996). Table 1 summarizes characteristics of existing methods and “listening in.” The cost and sample-size data are typical for the automotive industry. They are based on our experience and discussions with auto executives and consultants.¹

[Insert Table 1 about here.]
"Listening In" to Find and Explore New Combinations of Customer Needs

The methods in Table 1 are complementary. For example, qualitative and ethnography interviews are powerful methods to probe in-depth once “focused,” but are an expensive means to search for combinations of needs that might be desired by less than one percent of the market. Conjoint analyses provide accurate estimates of the importances of customer needs, but are most effective once targeted to approximately 10-20 needs. Even adaptive methods cannot handle all of the needs that describe a truck. AIO studies are designed to look across the entire market for new combinations of needs, but are expensive, done infrequently, and tend not to collect data on gaps in customer needs. On the other hand, AIO studies provide critical input to virtual advisors. Truck clinics provide the most realistic stimuli to customers. They are designed carefully to forecast sales prior to launch, but their primary use is confirmatory rather than exploratory.

“Listening in” fills a gap among existing methods by making it feasible to use inexpensive and readily available data to search large numbers of customer needs to find combinations of customer needs that are desired, but not currently fulfilled, by existing trucks. More importantly, unlike AIO studies, “listening in” can immediately and automatically target both quantitative and qualitative questions to further explore the new combinations of customer needs. Because “listening in” runs continuously and is updated periodically with new vehicles and benefits (needs), it provides an early warning of new needs-combination segments as soon as they appear in the market.

Tailored interviewing (TI) has characteristics that are similar to the Bayesian virtual advisor. Both TI and the virtual advisor seek to classify respondents – into seven segments as in Kamakura and Wedel (1995) or to three most-preferred trucks (out of 148) in our application. There are other technical differences which we discuss in the next section. A key conceptual difference is that, to be practical in the truck market, the virtual advisor must be updated almost continuously as new trucks enter the market or as new features are added to the question banks. While both methods assign respondents with posterior probabilities, the virtual advisor relies on Bayesian methods to update probabilities using data from multiple sources. Tailored interviewing relies on a calibration survey and uses maximum-likelihood methods (Kamakura and Wedel 1995, Equations 3-7). Each method works well in its target application.

“Listening in” is not a panacea nor can it operate without complementary methods. For example, while the virtual engineer contains qualitative probes, subsequent qualitative and ethnographic research provide greater depth on a segment once it is identified. Similarly, once new
needs’ combinations are uncovered, conjoint analyses search these combinations in greater detail and quantify the importance of the alternative needs. While “listening in” provides first-order forecasts, truck clinics provide the accuracy necessary before $1-to-2 billion is committed to a project. We illustrate below in a stylized manner how the “listening in” complements existing methods for two practical situations in truck markets. In practice, applications are more iterative and include other methods (Urban and Hauser 1993).

Identify Opportunities for a New Truck Platform

“listening in” ⇒ qualitative interviews ⇒ conjoint analysis ⇒ truck clinics ⇒ launch

Monitor Marketplace Changes for Vehicle “Refresh” Opportunities

“listening in” ⇒ conjoint analysis ⇒ truck clinics ⇒ launch

Tapping Data from Virtual Advisors (Web-based Searches)

Virtual-advisor data are extensive, available at little incremental cost, and underutilized as a means to identify unfulfilled combinations of customer needs. Websites such as Kelley Blue Book (kbb.com), Microsoft Autos (autos.msn.com), Edmund’s (edmunds.com), Auto-by-tel (autobytel.com), Autoweb (autoweb.com), NADA (nadaguides.com), and Vehix (vehix.com) have changed the way that customers search for information on cars and trucks. Sixty-two percent (62%) of all new-vehicle buyers search on-line before buying a vehicle (J. D. Power 2002). This search rate has increased from 54% in 2000 and 40% in 1999. The most-important and most-accessed Internet content was information about vehicle options and features. Interestingly, while customers prefer independent sites for pricing and general evaluation, they prefer manufacturers’ sites, by more than a two-to-one margin, for feature and option information (J. D. Power 2001, p. E16).

Virtual advisors come in many varieties including “comparators” that array choice alternatives by features (ePinions.com), “feature-specifiers” which ask the consumer for preferred levels of features and searches the data base for products that meet the feature specifications (Kelly Blue Book’s recommendation tool – kbb.com), “configurators” with detailed specifications and costs for the chosen set of detailed product features (configurator.carprices.com/autoadvisors/), “collaborative filters” which recommend products based on correlations of past purchases by similar customers (amazon.com), and “utility maximizers” which use conjoint-
“Listening In” to Find and Explore New Combinations of Customer Needs

analysis-like methods to weight features (activebuyersguide.com). Other advisors use real people accessed by e-mail (mayohealth.org) or in live chat rooms (nordstrom.com).

The “listening in” methodology relies on data from a Bayesian virtual advisor – a method that is well-matched to the opportunity trigger mechanism. However, the virtual engineer, the design palette, and the clustering are not limited to working with a Bayesian virtual advisor. These methodologies can work with any virtual advisor that provides recommendations at any point in the questioning sequence and links customers’ responses to benefits that the customers derive from vehicles.

A Bayesian Virtual Advisor

We now describe a Bayesian virtual advisor. This advisor was developed as a prototype for a major automotive manufacturer; a commercial system based, in part, this advisor is now in place on the web. This virtual advisor combines two methods to recommend a set of four vehicles to customers – a segmentation “gearbox” and a Bayesian advisor. The segmentation gearbox divides people into segments based on grouping and assignment rules.² The grouping is based on a cluster analysis of a 114-item AIO questionnaire sent to 100,000 respondents (76 personal viewpoints and 38 preferred vehicle characteristics – including styling and design). The AIO study by the automotive manufacturer identified forty-eight segments of which twenty-five were relevant to pickup trucks. Customers were assigned to segments based on answers about customer’s desires for features and options such as comfort, passenger capacity, and prestige as well as about the customer’s anticipated use of the truck. In the virtual advisor one of the four recommended vehicles is the vehicle bought most often by the segment to which the customer is assigned. However, because the segmentation gearbox is designed to allocate people to segments rather than identify new opportunities, it is not the focus of this paper. Instead, we focus on the Bayesian advisor which recommends three of the four vehicles.

Bayesian Advisor

The basic concept behind the Bayesian advisor is (1) to select sets of questions, known as question banks, such that the answers provide the most information about which vehicle to recommend and (2) after each question bank to update the probabilities that describe the likelihoods that each vehicle will be most preferred by the customer.³ Figure 1a illustrates the opening screen of the virtual advisor (a neighbor who is a contractor and who has bought many trucks over the years) and Figure 1b illustrates one of the question banks asked of customers. We de-
scribe first the Bayesian updating mechanism and then describe how this mechanism can be used to select the maximum-information question bank. We later indicate how the conditional probabilities and prior probabilities are obtained.

We begin with the notation. Let Q be a set of question banks indexed from \(q = 1 \) to N. For each question bank, \(q \), let \(r_q \) index the potential responses to that question bank where \(r_q \) is a nominal variable with values from 1 to \(n_q \). If there is more than one question in a question bank, then \(n_q \) represents the number of possible combinations of answers. If one of the questions includes a continuous sliding scale, it is discretized to a finite number of categories.

For each customer the order of the question banks is chosen adaptively. For a given customer, let \(R_{q-1} \) be the set of question banks up to, but not including, question bank \(q \). Let \(v_j \) indicate vehicles from 1 to \(V \). We are interested, at any point in the advisor’s questioning sequence, in the likelihood that the customer will prefer vehicle \(j \) after having been asked question bank \(q \). We indicate this likelihood by \(P(v_j | R_{q-1}, r_q) \).

Suppose that we have available from earlier surveys, the conditional probabilities of how customers, who prefer each vehicle, will answer the question banks. Then, we can use Bayes Theorem to update recommendations.\(^4\)

\[
P(v_j | R_{q-1}, r_q) = \frac{P(r_q | v_j, R_{q-1}) P(v_j | R_{q-1})}{\sum_{j=1}^{V} P(r_q | v_j, R_{q-1}) P(v_j | R_{q-1})}
\]

where \(P(v_j | R_{q-1}) \) was the virtual advisor’s recommendation probability to the customer for vehicle \(v_j \) prior to asking the \(q^{th} \) question bank.

However, even with data from full-scale surveys such as an AIO questionnaire with 100,000 responses, using Equation 1 is not feasible because the number of potential combinations of responses grows exponentially with the number of question banks. For example, in our study the dimensionality of \(R_N \), the number of unique paths through the advisor’s questions, is \(1.4 \times 10^{15} \). Fortunately we can make Equation 1 feasible based on the property of “local independence.” This property appears reasonable for our data and has proven robust in simulations and applications in the tailored-interviewing literature (e.g., Kamakura and Wedel Equation 11, Singh, Howell, and Rhoades 1990, Equation 8). Local independence recognizes that there will be non-zero correlations across vehicles in the answers to the question banks – those customers
who prefer a full-sized truck may also be likely to prefer a diesel engine. Indeed, it is this combination of preferences upon which the advisor bases its recommendations. However, if we limit ourselves to customers who prefer a Ford F350 Supercab, then, for those customers, responses to the “size” question bank are approximately statistically independent of the responses to the “engine type” question bank. This enables us to write \(P(r_q, R_{q-1} | v_j) \approx P(r_q | v_j) P(r_{q-1} | v_j) \cdots P(r_1 | v_j) \) which implies that \(P(r_q | v_j) \approx P(r_q | v_j, R_{q-1}) \) by the laws of conditional probability. Using this property, we rewrite Equation 1 as follows where \(P(v_j | R_{q-1}) \) is obtained recursively:

\[
(1') \quad P(v_j | R_{q-1}, r_q) \approx \frac{P(r_q | v_j) P(v_j | R_{q-1})}{\sum_{j=1} P(r_q | v_j) P(v_j | R_{q-1})}
\]

Figure 2 gives a simplified example for one customer of the evolution of the recommendation probability. The current recommendation is given on the left and the probability that the customer will purchase that recommended vehicle is given on the right. Also listed on the left are the question bank and parts of the answer. For example, after the second question bank on engine size, the customer answers “4 cylinders.” If the customer were to stop answering question banks and request a recommendation, the advisor would recommend the Mazda B2300 and forecast a 0.0735 probability that the customer would purchase the Mazda B2300. In Figure 2 the probability of purchase increases for the most preferred truck after each question bank is answered. Note that the recommended vehicle changes after the fifth question bank and again after the eighth question bank.

<Insert Figure 2 about here.>

Question Bank Selection

To select the next question bank the virtual advisor attempts to gain as much information as possible from the customer. For example, if, after reviewing the responses, the advisor decides that a question bank on towing capacity is likely to make one truck more highly probable and all other trucks less probable, then that question bank might be a good candidate to ask next. To do this formally, we turn to formal theory in which information is defined as the logarithm of the relative odds (e.g., Gallagher 1968). That is, the information, \(I(v_j | r_q, R_{q-1}) \), provided by the response to question bank \(q \), equals \(\log \left[\frac{P(v_j | R_{q-1}, r_q) / P(v_j | R_{q-1})}{} \right] \). This definition has a number of nice theoretical properties including that (1) under an equal proportional loss rule, information always increases when the probability of the maximum-choice truck increases, (2) the expected
"Listening In" to Find and Explore New Combinations of Customer Needs

information is maximized for the true probabilities, and (3) the information measure rewards systems that provide more finely-grained estimates (Kullback 1954; Savage 1971).\(^5\)

In order to compute the expected information, we take the expectation over all possible responses to question bank \(q\) and over all possible vehicles. The information that we expect from question bank \(q\) is given by Equation 2.

\[
EI(q | R_{q-1}) = \sum_{j=1}^{V} P(v_j | R_{q-1}) \sum_{r_{qj}} P(r_{qj} | v_j, R_{q-1}) \log \frac{P(v_j | r_{qj}, R_{q-1})}{P(v_j | R_{q-1})}
\]

We use a two-step look-ahead algorithm. For each potential question bank and response on Step 1, the advisor computes the best second question bank and the expected information for that question bank. It then selects the Step-1 question bank with the highest contingent expected information.

Initial Calibration

Two estimates are necessary and sufficient for the virtual advisor: prior probabilities, \(P(v_j)\), and the conditional response probabilities, \(P(r_{qj} | v_j)\). The virtual advisor obtains the prior probabilities for each individual from a logit model based on five truck characteristics: price, fuel economy, performance, reliability, and safety. Each customer is asked initial constant-sum, self-explicated importance weights \((w_c)\) for these characteristics. (These prior weights are obtained from questions that are asked prior to the question banks illustrated in Figure 2.) The prior probabilities are estimated with Equation 3 where \(w_c\) is the importance for the \(c^{th}\) characteristic, \(x_{jc}\) is the value of characteristic \(c\) for vehicle \(v_j\), and \(\beta\) is a scaling parameter.

\[
P(v_j) = \frac{e^{\beta \sum_{c=1}^{5} w_c x_{jc}}}{\sum_{j=1}^{V} e^{\beta \sum_{c=1}^{5} w_c x_{jc}}}
\]

The characteristic values for each existing vehicle and the scaling parameters are obtained from archival data and judgments by managers and engineers. For example, prior surveys to owners help establish that the Toyota Tacoma 4x4 (regular cab) has a rating of 1.087 on fuel economy and a rating of 1.241 on performance. For the GMC Sonoma 2WD Regular Cab the corresponding ratings are 2.116 and 0.525 respectively. (Data disguised slightly.) The actual data were synthesized from “an ongoing global effort” by the manufacturer “to understand consumers’ needs and wants related to motor vehicles.” (Quotes from a proprietary study.) Part of this ongoing
global effort included data from the AIO questionnaire described earlier (76 “personal viewpoints” and 38 “vehicle characteristics”). When new vehicles become available, managers and engineers provide temporary estimates of the x_{jc}’s.

The conditional response probabilities are based on the ongoing AIO surveys, supplemented when necessary by experienced managers and engineers. For example, the survey data suggest that customers who prefer the Toyota Tacoma 4x4 (regular cab) are likely to answer that they prefer a four-wheel drive vehicle 84% of the time. They are likely to answer that they prefer two-wheel drive only 16% of the time. Table 2 illustrates data, disguised slightly, on conditional probabilities for numbers of passengers that are obtained from AIO studies. These data, $P(r_q | v_j)$, are sufficient for the updating equations (Equations 1’ and 2) if they are available for all question banks in the virtual advisor.

<Insert Table 2 about here.>

Evolving Question Banks

Virtual advisors and “listening-in” are not one-shot studies. Markets evolve as customer needs change and technology improves. Each year brings changing features and new truck brands. To be effective in advising customers and identifying new opportunities, it must be relatively simple to update the prior and conditional probabilities with data from multiple sources. For example, suppose that four-wheel steering becomes a feature that is important to customers (and a feature that helps the advisor recommend a truck). Suppose further that some truck brands start offering this feature for the 2003 model year. We add a question bank on steering to the set of available trucks. Because of the local independence property, we need only obtain incremental data for the new question banks. We need to know how owners of each truck brand will rate their vehicles on the new question bank. For new truck brands we need to know how owners of the new brands will rate their vehicles on the characteristic values (x_{jc}’s) and how they will answer each question bank, $P(r_q | v_j)$. These data are obtained from the periodic AIO surveys or from other sources such as one-time surveys and judgment. In essence, the virtual advisor (and “listening-in”) free-rides on surveys undertaken by the manufacturer for other purposes. This adaptability is a key feature necessary for practical application and represents a conceptual difference between the Bayesian virtual advisor and tailored interviewing. The former uses Bayesian methods to incorporate new data from multiple sources while the latter relies on maximum-likelihood estimates obtained from a calibration survey. Each method is matched to its ap-
“Listening In” to Find and Explore New Combinations of Customer Needs

application domain. However, future research might combine these relative strengths into an improved methodology.

Opportunity Trigger Mechanism

The next stages of “listening in” identify when opportunities exist and identify the combinations of customer needs that are not satisfied by existing vehicles.

Trigger Mechanism to Identify When Opportunities Exist

For many customers an existing vehicle will fulfill their needs and the updated recommendation probabilities will evolve smoothly as in Figure 2. Existing vehicles satisfy the combinations of needs desired by these customers. However, for some customers, their answers to question banks reveal inconsistencies. For example, suppose that (1) the customer has already answered constant-sum importance question banks that indicate reliability and low price are important (price 30 points, performance 10 points, fuel economy 20 points, reliability 30 points, and safety 10 points) and (2) the customer’s subsequent answers suggest an interest in a small truck with a 4-cylinder engine, two-wheel drive, and automatic transmission. The Mazda B2300 fits these preferences best (see Figure 3 – Question banks 1 to 4). Given these answers the virtual advisor decides that further information on towing and hauling will clarify recommendations. The advisor expects that the customer will want to haul relatively light loads such as small-garden equipment or tow a jet ski. Knowing the exact towing and hauling needs will help the advisor decide among a number of otherwise comparable light-duty trucks.

However, suppose the customer says that he or she plans to use the truck to haul heavy materials and tow a large motor boat (weighing 6,500 pounds). No existing light-duty truck can tow such heavy loads effectively and safely. On the other hand, no truck that can tow such heavy loads can fill the customer’s requirements as expressed in earlier question banks. If enough customers desire these combinations of features, this may be an opportunity worth investigating – a light-duty truck that can occasionally haul heavy materials or tow heavy loads. Note that the goal is to define the opportunity by “needs” (light-duty, haul heavy materials) rather than “features” (V8 engine). In this way, new vehicles can satisfy these newly identified combinations of customer needs with features that may or may not be available in existing vehicles.

The intuition in this example is that the question bank on towing and hauling revealed something about the customer’s underlying needs. This new information suggests that the customer is not satisfied with the needs’ combinations provided by existing trucks; the virtual advi-
sor will have to revise its best-truck recommendation probability downward. This drop in the maximum recommendation probability becomes a trigger for further investigation. We illustrate this trigger mechanism by an arrow in the dialogue in Figure 3. Question Bank 5, which included questions about towing and hauling, causes the most preferred vehicle to change from the Mazda to a Ford Ranger (a slightly larger and more-powerful compact truck). Utility drops because this more powerful compact truck is an insufficient compromise to meet the towing and hauling requirements and the requirements expressed in Question banks 1-4. (It has a 6-cylinder engine and is more expensive.) A full-sized truck, such as the Chevrolet Silverado 1500, could fulfill the towing and hauling requirements, but the advisor does not recommend the Silverado because it does poorly on the other desired features. After further question banks, the recommendation probabilities in Figure 3 again increase because the Ford Ranger fulfills the additional requirements.

The intuitive idea in Figure 3 has appeal, but before we incorporate the trigger mechanism we must investigate it further. For example, the posterior probability might drop because there is error in the customer’s response. If the trigger mechanism is too sensitive, it might identify many false need-conflicts and the true need-conflicts might be lost in the noise. On the other hand, if it is not sensitive enough, the trigger mechanism might miss opportunities. We show later in this paper, through simulation, how to select a sensitivity level for the trigger mechanism such that segments of customers desiring known combinations of needs are recovered with sufficient precision. In these simulations we begin with real data for the conditional probabilities and create “known” segments. We then add error and examine how various sensitivity levels balance false positives and false negatives. The simulations demonstrate that calibration is feasible and that the performance of the “listening-in” mechanism is reasonably robust in the face of response errors. It is also reasonably robust with respect to the sensitivity levels chosen for the trigger mechanism. Having thus established a reasonable degree of internal validity we are more confident in applying the methodology to real data.

The other issue is theoretical. The intuition, above, assumes that a drop in posterior probability identifies a conflict in the desired customer needs that are fulfilled by existing vehicles. If a question bank affected only the vehicle that was recommended prior to the q^{th} question bank and if that same vehicle were recommended after the q^{th} question bank, then most random utility
models would suggest that a probability drop is an indicator of an underlying utility drop. For example, both the logit and the probit models have this property. However, each question bank can affect the probabilities of all 148 vehicles and change the identity of the recommended vehicle based on the q^{th} question bank. We demonstrate formally in the Appendix that the intuition still holds. If the q^{th} question bank does not change the identity of the recommended vehicle, then a drop in posterior probability is a necessary and sufficient condition that the recommended vehicle has characteristics in conflict with the customer’s preferences. The more complex issue is when the q^{th} question bank changes the identity of the recommended vehicle. We show formally that if the recommended vehicle changes and the posterior probability drops, then it must be the case that a truck with mixed characteristics would have higher utility than either the truck recommended before the q^{th} question bank or the truck recommended after the q^{th} question bank. We also show that the better-for-the-customer mixed-characteristic truck is not an existing truck.

Analyses to Identify Which Combinations of Customer Needs are Not Satisfied

When a probability drop identifies a potential conflict, we seek further information to identify which customer needs are in conflict. Consider first a null hypothesis that the existing trucks satisfy (almost all) customer needs’ combinations. This hypothesis implies that, if two truck characteristics are positively correlated among existing trucks, then we expect them to be positively correlated among customers’ preferences as revealed by their answers to the questions banks. For example, based on existing trucks we expect a positive correlation across vehicles of the probabilities that a customer (1) will use the truck for trailering heavy loads and (2) prefer a rugged body style for that vehicle. Based on existing trucks we expect a negative correlation of the probabilities that a customer will (1) use the truck for trailering heavy loads and (3) prefer a compact body style. Because no existing truck satisfies these needs simultaneously, recommendation probabilities will drop when the customer requests a compact truck that can tow heavy loads (Appendix).

This means we can identify the needs’ combinations that caused the drop by examining negative correlations among expected answers to the question banks for the questions answered by those customers who experienced a probability drop. The probability drop challenges the null hypothesis and its implications. That is, those customers who experience a probability drop want some combinations of customer needs that, in the existing market, are negatively correlated. To
“Listening In” to Find and Explore New Combinations of Customer Needs

find the desired combinations from the set of all negatively correlated combinations we limit our search to the need-combinations evaluated by those customers with probability drops.

Formally, let $\rho_{r_q r_p}$ be the correlation across vehicles of the conditional probabilities of a customer answering r_q to question bank q and answering r_p to question bank p. Let P be the matrix of these correlations (here P is a capital ρ). Whenever a probability drop suggests a potential opportunity, the “listening-in” algorithm examines all correlations corresponding to that customer’s answers to the first q question banks ($R_{q-1} Y r_q$). It flags those which are highly negative (less than -0.30 in our application). Such negative correlations indicate why the (triggered) customer’s desired benefits (needs) are not fulfilled by existing trucks (subject to statistical confidence). The level of the flagging mechanism is set with simulation.

The opportunity trigger identifies those customers who have combinations of needs that are not satisfied and flags specific entries in the P-matrix to identify combinations of needs that represent new opportunities. These combinations of needs are a working hypothesis for a new opportunity. However, before the automotive firm can act upon that working hypothesis, it needs further information about the potential opportunity. It needs more information because the number of questions used by the virtual advisor is, by necessity, a compromise between efficient recommendation (fewer questions) and probes for new combinations of needs (more questions). To understand and explore the opportunity more completely, “listening in” complements the virtual advisor and the trigger mechanism with a virtual engineer and a design palette.

A Virtual Engineer Clarifies the Opportunity

The virtual engineer (VE) concentrates its questions to obtain relevant, more-detailed information about combinations of customer needs. The VE asks relatively few questions of each targeted customer (six screens in our application), but, across many customers, its questions span the needs-space. In our application, the VE explores an additional 79 features beyond the 36 features explored in the virtual advisor. Like the virtual advisor, the VE is designed to be flexible; its questions are updated continuously without re-commissioning large-scale AIO surveys.

The concept of a VE is simple; its implementation difficult. To be useful, the VE must ask the customer those questions that inform the engineering design decisions that are necessary to design a truck to meet the customers’ newly identified (potential) combination of needs. To be credible to the customer, the VE must ask questions in a non-technical manner that relates to
how the customer uses the truck. Naturally, the VE evolves through application, but we describe here the process by which the initial VE questions are created.

An engineering design team from a major automotive manufacturer considered the basic engineering problem imposed by potential conflicting needs. The team then generated the questions that the team would need answered in order to clarify the opportunity and decide among basic solutions to conflicts. The engineering team formulated the questions that they would ask the customer if they were participating in the dialogue between the advisor and customer. For example, if the customer wants a compact truck that can tow a large boat, then the engineering team would ask about the type of boat (e.g., modest sailboat, large motor boat, or multiple jet skis) and the weight of the boat(s) that the customer plans to tow. The engineering team would also ask the customer why he or she wants a compact truck (e.g., low price, tight parking, high maneuverability, fuel economy, etc.). All engineering questions are then rephrased into customer language.

In addition to the questions identified by the engineering team, the VE includes open-ended dialogues which enable the customer to elaborate further the reasons underlying the previously-unidentified combinations of needs. Figure 4 illustrates a sample dialogue in which the VE introduces himself, asks about a conflict, gathers quantitative data, and asks for open-ended comments. In this example, the conflict is between a full-sized truck and a 6-cylinder engine.

A Design Palette Solicits Customer Solutions to Potential Conflicts

We supplement the VE with a design palette (DP) covering fourteen features. The DP’s perspective is the customer’s own solutions (von Hippel 1986). The DP is similar to innovation “tool-kits,” configurators, and choice-boards which enable customers to mix and match features (Dahan and Hauser 2002; Hauser and Toubia 2003; Liechty, Ramaswamy and Cohen 2001; von Hippel 2001).

The DP is illustrated in Figure 5. The customer (a) receives instructions, (b) changes the size of the truck, and (c) changes the color. For brevity, we have not shown the many intermediate steps, some of which include new state-of-the-art truck features such as four-wheel steering and extra-wide frames. However, changes do not come free to the customer. There are sophisticated engineering/cost models underlying the DP. For example, if the customer changes the size of the truck, then the price, fuel economy, and towing/payload capacity change accordingly. Af-
ter completing the redesign the customer is given the opportunity to indicate whether, and by
how much, he or she prefers the new design. (The customer may not prefer the new design be-
cause of accumulated “sticker shock” or because of an holistic judgment of the final truck.) In
the empirical application described later in this paper, 73% of the respondents who completed
the exercise indicated that they would purchase their custom-designed truck were it available. 7

Design palettes are evolving rapidly. For example, one system enables the customer to
adjust the length of the hood of a car or truck while the software automatically insures the integ-
ritry of other design elements such as the windshield angle and window shape. The customer sim-
ply clicks on the hood and drags it forward or clicks on the front bumper and pushes it back. Us-
ing this advanced DP, the customer creates easily a Euro sports design (short front overhang,
high truck deck, low overall height) that is pleasing to the eye and incorporates many “design”
heuristics. Alternatively, by lengthening the front overhang and the hood the customer creates a
classic look with a long sloping back to the truck. The software is sufficiently advanced that the
customer can then rotate the model in all directions to get a full 3D view.

Together the virtual advisor, VE, and DP explore 129 customer needs (10^{52} combinations, many needs are multi-level). These detailed data help the firm understand the customer-
need conflicts that led some customers to experience a probability drop. The philosophy behind
this “listening-in” search differs from conjoint analysis. Conjoint analysis collects data on the
importances of customer needs and searches to find needs’ combinations that satisfy a minimum
share of the market profitably. On the other hand, “listening in” monitors needs’ requests in or-
der to identify when customers request combinations of needs that are not now fulfilled by exist-
ing trucks. After the opportunities are identified, they can be explored further with conjoint
analysis.

Initial Sizing of the Opportunity

The next stage of “listening in” groups customers according to their unmet combinations
of needs as revealed through flagging components of the P-matrix (supplemented with the VE
and DP for interpretation). This estimate of market potential is a rough indicator, but it is suffi-
cient to identify potential opportunities for the fuzzy front end of an iterative product develop-
“Listening In” to Find and Explore New Combinations of Customer Needs

ment process. The firm evaluates these opportunities further with targeted qualitative and quantitative research.

Let \(A_i \) represent customer \(i \)’s answers to the question banks. For each \(A_i \) we identify a subset, \(P_i \), of the P-matrix, that represents strongly negative correlations. By clustering triggered respondents on \(P_i \), we identify groups of customers with similar combinations of desired needs that are not fulfilled (on average) by existing trucks. Subject to the caveat of self-selected customers, the size of the cluster as a fraction of the initial sample is a rough indicator of the size of the segment who desires the identified combinations of needs. To simulate a new truck “design,” we define a concept truck by the needs it fulfills as reflected by customers’ answers to the question banks, \(P(r_q | v_j) \). These “data” are sufficient to calculate revised posterior probabilities for all trucks, including the new truck concept (Equation 1’). Averaging the revised posterior probabilities over respondents provides a rough estimate of the potential market share for the new concept truck.

Monte Carlo Simulations: Sensitivity to Error and the Trigger Mechanism

If successful, “listening in” will affect billion-dollar decisions on new truck platforms. Before we can be confident in its application we must address three issues. First we want to know whether “listening in” can recover opportunities from noisy data. This issue is best addressed with simulation because we can specify “known” segment of customers who have unmet needs’ combinations. Second, applications require that the opportunity trigger be calibrated. Here, too, simulation is best to determine the best trigger sensitivity. The final issues, relevance and external validity, are best addressed with a “proof-of-concept” application in which we “listen in” to real customers in a pilot study to determine whether unmet combinations of needs can be identified. We hope that the pilot study can, at least, identify combinations of needs that were discovered in parallel by alternative studies (at much greater expense). Recall that the truck manufacturers routinely spend tens of millions of dollars annually on market research.

Simulation Methodology

We use the conditional probabilities, \(P(r_q | v_j) \)’s. and P-matrix correlations based on the 100,000-respondent AIO study supplemented by managerial judgment. Based on the “proof-of-concept” study described below, we select three segments of customers whose needs are satisfied by existing trucks (e.g., full-sized trucks that can tow and haul large loads). These three seg-
ments provide a base-line with which to test whether the methodology identifies false opportunities. Next we generate six segments with combinations of needs that are not satisfied by existing trucks. We define their responses to the question banks to be consistent with their desired benefits (needs). We seek to test whether “listening in” can recover these segments from noisy data. Because of the multiple stages of “listening in,” this is far from assured. In total we generate nine customer segments of 500 respondents each – a total of 4,500 simulated respondents.

We next add errors to the customer’s responses. For the \(r_q \)'s, which are nominal variables, we randomly select \(E\% \) of the questions to be answered incorrectly. The incorrect answers are distributed among the remaining categories based on a uniform distribution. For the \(w_c \)'s, which are interval-scaled variables (mean = 20), we simulate response error by adding a zero-mean, normally-distributed response error such that the standard deviation of the error equals a specified number of points (\(e \)). For simplicity we truncate negative self-explicated importances which, fortunately, occur with low probability. We then apply the “listening-in” equations to each of the 4,500 simulated respondents. For clustering the \(P \)-matrix, we use a \(k \)-means non-tree clustering algorithm based on the Euclidean norm defined on the matrix of negative correlations from triggered respondents (respondents by potential conflict pairs). Details available from the authors.

Internal Validity – Testing Recovery of Unmet Needs’ Combinations from Noisy Data

As a first test of internal validity we add moderate noise with \(e = 5 \) points and \(E = 10\% \). We use a relatively sensitive opportunity trigger; we record conflict correlations whenever \(P(v_i | r_q, R_{q-1}) - P(v_i | R_{q-1}) \leq 0.00005 \). We examine sensitivity to this parameter below.

Table 3 suggests that “listening in” can recover “known” needs’ combinations from moderately noisy data. The entries indicate the number of respondents from a true segment (rows) that were assigned to a cluster (columns). The largest number in each row is displayed in **bold** text. We examine Table 3 at the macro level and at the micro level.

The managerial focus is at the macro level. First, we notice the diagonal nature of the data in Table 3 – even with noise in the data, “listening in” identified all five segments. Next we look at the unmet combinations of needs that defined each segment. For example, the first “known” segment was defined by four need-conflicts: compact truck/tow large loads, compact truck/haul large loads, 4-cylinder engine/tow large loads, and a 4-cylcinder engine/haul large...
loads. In Cluster 1, the percentages of respondents who had these needs were 95.9%, 82.4%, 77.3%, and 73.3% respectively. No other need conflict was identified for more than 9.4% of the Cluster-1 respondents. We obtain similar results for the other five “known” clusters. There were no false-positive needs’ combinations identified at the macro level. (Clusters 8 and 9 are redundant with Cluster 6.)

At the micro level, 82.7% of the respondents were classified correctly. Most of the misclassifications were respondents who were classified falsely to the null segment because of errors in their responses. The simulation identified 21,096 conflict pairs compared to only 16,500 true conflict pairs – 14% were false negatives and 36% were false positives. Thus, response errors clearly affect the classification of specific respondents. Fortunately, the macro-level identification of unmet needs’ combinations appears robust with respect to these micro errors. We now test whether this insight generalizes to other levels of errors (e and E) and other sensitivities of the opportunity trigger.

Setting the Sensitivity of the Opportunity Trigger and Its Relative Robustness

Table 4 repeats the simulations for various trigger sensitivities (t) varying from extremely sensitive ($t = 0.00000$) to extremely insensitive ($t = 0.10000$). At both the macro- and micro-levels, “listening in” is relatively robust with respect to the trigger level for $t \leq 0.001$. For larger sensitivities performance degrades. For extremely high t, all opportunities are missed. Based on Table 4, and simulations with other levels of error, we recommend a sensitive trigger. The exact level is less critical as long as the level is below 0.001.

Sensitivity to the Level of Response Errors

We now explore the sensitivity of “listening in” to response errors in the constant-sum question banks (e) and the nominal question banks (E). We examine performance at both the macro-level (percent of needs’ combinations identified) and the micro-level (percent of respondents classified correctly). Table 5 suggests that performance is relatively insensitive to errors in the priors (w_c’s), even for errors that are 50% of the mean response (10 points). This is not surprising for a Bayesian system – the impact of the priors diminishes as more question banks are answered. However, performance is sensitive to errors in the nominal question banks with clear degradation at a 20% error. Such an error rate would correspond to 1 in 5 respondents saying
they want a compact truck when they really want a large truck. Table 5 indicates that care must be taken in web design to engage customers with clear questions so that error rates (E) remain at 10% or lower. 9

<Insert Table 5 about here.>

Summary

Together Tables 3, 4, and 5 suggest a reasonable level of internal validity despite errors in both the prior preferences and the responses to the question banks. As long as the trigger level is relatively sensitive (≤ 0.001) and the nominal error is moderate (≤10%), “listening in” can identify “known” segments of customers who desire those combinations of needs that are not met with existing trucks. Recovery is not perfect when there are response errors, but this level of recovery should be sufficient for the fuzzy front end of product development, especially when final managerial decisions are refined with subsequent qualitative and quantitative data.

“Proof-of-Concept” Application and Test

Before bringing “listening in” on-line to a situation in which over 350,000 customers are tracked annually, it was important to test the methodology in a pilot test with real customers. In August of 2001 an automotive manufacturer sponsored a study in which 1,092 pickup-truck customers were recruited from the Harris Interactive Panel and given a $20 incentive to participate in the test.10 On average each customer spent 45 minutes with the virtual advisor, design palette, and virtual engineer (when triggered). Most customers found the experience worthwhile. Customers trusted the virtual advisor by an 8-to-1 margin over dealers and would be more likely to purchase a vehicle recommended by the virtual advisor by a 4-to-1 margin over a vehicle recommended by a dealer. For the design palette, 78% found it an enjoyable experience and 82% felt it was a serious exercise. When the virtual engineer was triggered, 88% found the questions easy to answer and 77% felt that the virtual engineer related well to their needs. Interestingly, 56% of the customers reported that they would pay for the advise provided by the virtual advisor if it were included in the price of the pickup truck that they purchased as a result of using the advisor.

With a sensitive trigger, the most common pairwise conflicts were a maneuverable full-sized truck (38%), a compact truck which could tow and haul heavy materials (14%), and a full-sized truck with a six-cylinder engine (7%). Two segments of customers were identified who
expressed unmet combinations of needs. Segment 1 (S1) requested large trucks but indicated a desire for maneuverability. S1 consisted of two groups – those who wanted a top-of-the-line truck and those who wanted a standard full-sized pickup. Segment 2 (S2) requested a compact truck that could tow and haul heavy loads. Table 6 provides more detail on S1. From the VE we learn that respondents are using the full-sized truck for city driving. Large trucks fulfill critical needs for large passenger capacity and large payloads. However, these respondents also desire maneuverability – combinations of benefits (needs) that are not available with existing trucks.

The DP explored S1’s desires further. The features that they changed most often were truck height (6’ to 7’), truck width (6’ to 7’), and steering (two-wheel to four-wheel steering). This suggests that they are looking for an even larger truck, but that they would be interested in four-wheel steering to gain maneuverability. Using the methods described earlier for market sizing, we estimated the potential market share of a full-sized truck with four-wheel steering. Based on cost models, we calculated that the extra features would increase the manufacturer’s suggested retail price (MSRP) by $3,000. For this concept truck, the “listening-in” equations estimate a market-share increase for the manufacturer of 3-4% (the exact value is coded for confidentiality). Such a $2.4-to-3.2 billion dollar per year opportunity is worth further investigation. In addition, a compact truck with heavy-duty hauling and towing is estimated to be a $1-to-2 billion opportunity (values coded). Technically, these benefit (needs) combinations are feasible using a small truck platform with a strong frame, transmission, and engine.

After our study was complete we learned (previously unknown to us) that the automotive manufacturer was in the process of introducing four-wheel steering in order to improve the maneuverability of its top-of-the-line pickup truck (the 2002 GMC Denali). This combination of needs had been identified with traditional methods (Table 1), but at a significantly greater cost. This truck is selling well. We plan to monitor the sales of this truck to determine whether its sales are in the rough range predicted by the market-sizing equations. We could find no indication that traditional methods identified the need for a basic truck with four-wheel steering. We plan to monitor whether such a combination of needs is confirmed with traditional methods.

Summary, Discussion, and Future Research

In this paper we explore a methodology to “listen in” on customer dialogues with virtual advisors in order to identify combinations of customer needs that are not fulfilled by existing
trucks. Monte Carlo analyses suggest that “listening in” is internally valid and relatively robust with respect to response errors and trigger sensitivity. A “proof-of-concept” demonstration suggests that unmet needs’ combinations for real respondents can be identified.

Like all methodologies, “listening in” will benefit from continuous improvement. Each stage can be improved – better methods to identify priors, more efficient look-ahead algorithms, improved calibration of the trigger mechanism, and better indicators of conflicting needs could all benefit from further research. The dialogues, the user interfaces, and the presentation of stimuli are all areas of potential improvement. For example, work is now underway to put more “stretch” into the design palette and to give the virtual advisor and the virtual engineer personalities based on “talking heads.” The various stages of “listening in” are designed to be modular. Future research could explore other advisors, triggering mechanisms, means to identify and size segments (e.g., latent structure analysis), and applications (e.g., telecommunications, consumer electronics, travel services, and financial services).
Endnotes

1. Table 1 also includes tailored interviewing, an approach that shows promise for automotive applications, especially the segmentation gearbox used in the virtual advisor.

2. The industry term, gearbox, is an analogy. Just as the gearbox in a car matches engine speed to wheel speed, the segmentation questions match the manufacturer’s vehicles to the customer.

3. The global set of question banks, from which the algorithm selects, is drawn from cluster analyses of the ongoing AIO surveys, supplemented with managerial judgment. The set of question banks evolves based on ongoing market intelligence. These methods are state-of-the-art, but standard, marketing research practice. They are not the focus of this paper.

4. In most equations, we suppress the individual customer subscript, \(i \), for simplicity.

5. For applications in marketing of information-theory-based reward functions see Hauser (1978) and Herniter (1973). For applications in psychology, see Prelec (2001).

6. Such correlations across vehicles are consistent with local independence which assumes response independence conditioned on a given vehicle. Local independence allows customers to be heterogeneous across vehicles in their answers to the question banks.

7. Due to self-preference learning, memory accessibility, and context effects, the preference for the self-designed truck might be inflated (Simmons, Bickart and Lynch 1993; Tourangeau, Rips and Rasinski 2000). This does not diminish the value of the design palette as a means to clarify opportunities.

8. There is self-selection because customers choose to initiate dialogues with virtual advisors. Nonetheless, a large fraction of self-selected customers might still be an important opportunity. We expect less self-selection as more truck customers use the web to search for information.

9. There appears to be a slight anomaly in the last rows of Tables 5a and 5b. For \(E=20\% \), classification and identification appear to increase slightly with errors in the self-explicated importances. This happens because the combination of errors pushes more respondents to the “no-conflict” clusters. As a result, a few more “no-conflict” respondents are classified correctly making it easier to achieve a “majority” in the remaining clusters. Neither difference is significant at the 0.05 level with a two-tailed t-test.

10. This initial test was based on a stratified random sample of the panel. For this test, all customers were given the opportunity to use the design palette.

11. We obtain rough forecasts by adding a full-sized maneuverable pickup truck to the choice sets of the needs-segment customers. We obtain \(P(r_u | v_j) \) for the new vehicle by assuming a profile similar to an existing vehicle except for the critical responses on the size and maneuverability questions, which are changed to be consistent with the vehicle being both full-sized and maneuverable. The iterative use of Equation 1 provides the estimates.
Figure 1
Example Question Banks Asked by Bayesian Virtual Advisor

(a) Introductory Screen (b) Example Question bank
“Listening In” to Find and Explore New Combinations of Customer Needs, Figures

Figure 2
Evolution of Updated Recommendation Probabilities After Question Banks

Figure 3
Example Use of the Opportunity Trigger
“Listening In” to Find and Explore New Combinations of Customer Needs, Figures

Figure 4
Virtual Engineer

(a) Introductory Screen
(b) Example Dialogue
(c) Specific Questions to Elaborate
(d) Open-ended Questions
"Listening In" to Find and Explore New Combinations of Customer Needs, Figures

Figure 5
Design Palette

(a) Introductory Screen
(b) Customer Selects Size

(c) Customer Selects Color
(d) Customer Evaluates His or Her Design
"Listening In" to Find and Explore New Combinations of Customer Needs, Tables

<table>
<thead>
<tr>
<th>Complementary Methods for Understanding Customer-Need Combinations – Trucks’ Example</th>
<th>Data Source</th>
<th>Incremental Cost per Study</th>
<th>Number of Features or Stated Needs per Study</th>
<th>Number of Vehicles per Study</th>
<th>Number of Feature Combinations</th>
<th>Includes In-depth Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative and Ethnographic Interviews†</td>
<td>5-10 groups of 5-10 customers per segment</td>
<td>$40-50,000</td>
<td>50-100</td>
<td>5-10</td>
<td>open-ended</td>
<td>yes</td>
</tr>
<tr>
<td>Tailored Interviews*</td>
<td>512 (calibration) plus 235 mail questionnaires</td>
<td>$10-15,000</td>
<td>12-15 items (phase 2)</td>
<td>single scale</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tailored Interviews*</td>
<td>800 personal interviews</td>
<td>$80,000</td>
<td>73 scales</td>
<td>7 segments</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Segmentation*</td>
<td>800 personal interviews</td>
<td>$80,000</td>
<td>73 scales</td>
<td>7 segments</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Interest or intent*</td>
<td>800 personal interviews</td>
<td>$80,000</td>
<td>73 scales</td>
<td>7 segments</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AIO Studies†</td>
<td>100,000 mailed questionnaires</td>
<td>$500,000</td>
<td>114</td>
<td>150</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Conjoint Analyses†</td>
<td>300 on-line or in-person interviews</td>
<td>$50-100,000</td>
<td>10-20</td>
<td>5-10</td>
<td>$10^6</td>
<td>–</td>
</tr>
<tr>
<td>Truck Clinics†</td>
<td>300 central-facility personal interviews</td>
<td>$500,000</td>
<td>40-50</td>
<td>10-20</td>
<td>–</td>
<td>yes</td>
</tr>
<tr>
<td>Listening In††</td>
<td>track on-line</td>
<td>$10-20,000</td>
<td>36</td>
<td>148</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bayesian Advisor</td>
<td>track on-line</td>
<td>included</td>
<td>–</td>
<td>–</td>
<td>10^{15}</td>
<td>–</td>
</tr>
<tr>
<td>Opportunity Trigger</td>
<td>track on-line</td>
<td>included</td>
<td>79</td>
<td>–</td>
<td>10^{31}</td>
<td>yes</td>
</tr>
<tr>
<td>Virtual Engineer</td>
<td>invite on-line</td>
<td>included</td>
<td>14</td>
<td>–</td>
<td>10^6</td>
<td>–</td>
</tr>
<tr>
<td>Design Palette</td>
<td>invite on-line</td>
<td>included</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Clustering</td>
<td>track on-line</td>
<td>included</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

†Data as cited in paper and/or typical for the automotive industry. Some estimates are rounded for confidentiality

*Data from Kamakura and Wedel (1995, segmentation) and Singh, Howell and Rhoads (1990, Likert). Automotive cost estimates based on sample sizes in the Journal of Marketing Research articles. Cost per respondent is typical for the industry as estimated by auto industry executives and consultants.

††Experience based on pilot study. The numbers of vehicles, needs, and combinations may increase in subsequent applications.
Table 2
Conditional Probabilities Obtained from AIO Surveys, Supplemented with Judgment

<table>
<thead>
<tr>
<th>Number of passengers</th>
<th>Chevy Avalanche 2WD</th>
<th>Chevy Silverado 2500 2WD</th>
<th>GMC Sonoma 4WD Crew Cab</th>
<th>...</th>
<th>Dodge Ram Club 4WD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 passenger</td>
<td>5%</td>
<td>25%</td>
<td>15%</td>
<td>...</td>
<td>10%</td>
</tr>
<tr>
<td>2 passengers</td>
<td>15%</td>
<td>25%</td>
<td>5%</td>
<td>...</td>
<td>15%</td>
</tr>
<tr>
<td>3 passengers</td>
<td>25%</td>
<td>25%</td>
<td>15%</td>
<td>...</td>
<td>25%</td>
</tr>
<tr>
<td>4 passengers</td>
<td>25%</td>
<td>15%</td>
<td>25%</td>
<td>...</td>
<td>25%</td>
</tr>
<tr>
<td>5-6 passengers</td>
<td>30%</td>
<td>10%</td>
<td>25%</td>
<td>...</td>
<td>25%</td>
</tr>
</tbody>
</table>

Table 3
Results of the Simulated Cluster Analysis

<table>
<thead>
<tr>
<th>Needs-Combinations†</th>
<th>Respondents Classified to Cluster</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cluster number:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9</td>
<td></td>
</tr>
<tr>
<td>Compact truck, large loads</td>
<td>418 0 0 1 0 0 81 0 0</td>
<td>500</td>
</tr>
<tr>
<td>Sporty full-sized, short bed</td>
<td>1 422 0 0 0 0 77 0 0</td>
<td>500</td>
</tr>
<tr>
<td>Compact truck, diesel</td>
<td>0 0 401 0 0 0 99 0 0</td>
<td>500</td>
</tr>
<tr>
<td>Full-sized, extra-short bed</td>
<td>1 0 0 346 0 0 153 0 0</td>
<td>500</td>
</tr>
<tr>
<td>Compact truck, 10 cylinders</td>
<td>3 27 0 0 336 0 134 0 0</td>
<td>500</td>
</tr>
<tr>
<td>Full-sized, maneuverable</td>
<td>0 2 0 0 0 346 92 43 17</td>
<td>500</td>
</tr>
<tr>
<td>Null segment</td>
<td>43 0 2 1 0 0 1454 0 0</td>
<td>1500</td>
</tr>
</tbody>
</table>

†Multiple needs’ combinations were desired by each “known” segment. We list here examples for each segment.

Table 4
Calibrating the Opportunity Trigger

<table>
<thead>
<tr>
<th>Trigger Level</th>
<th>Percent of Respondents Classified Correctly</th>
<th>Percent of Opportunities Identified Correctly</th>
<th>Percent of Needs’ Combinations Segments Identified</th>
<th>False Opportunities Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>t = 0.00000</td>
<td>82.73%</td>
<td>100%</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>t = 0.00005</td>
<td>82.73%</td>
<td>100%</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>t = 0.00010</td>
<td>82.69%</td>
<td>100%</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>t = 0.00100</td>
<td>82.69%</td>
<td>100%</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>t = 0.01000</td>
<td>56.69%</td>
<td>63.6%</td>
<td>63.4%</td>
<td>0</td>
</tr>
<tr>
<td>t = 0.10000</td>
<td>33.33%</td>
<td>0%</td>
<td>0%</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 5
Sensitivity to Response Errors

<table>
<thead>
<tr>
<th>Response Errors (updating)</th>
<th>Errors in the Self-Explicated Importances (priors)</th>
<th>e = 0 points</th>
<th>e = 5 points</th>
<th>e = 10 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>E = 0%</td>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>E = 10%</td>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>E = 20%</td>
<td></td>
<td>93.9%</td>
<td>75.8%</td>
<td>81.8%</td>
</tr>
</tbody>
</table>

(a) Macro-level: percent of unmet needs’ combinations identified correctly

<table>
<thead>
<tr>
<th>Response Errors (updating)</th>
<th>Errors in the Self-Explicated Importances (priors)</th>
<th>e = 0 points</th>
<th>e = 5 points</th>
<th>e = 10 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>E = 0%</td>
<td></td>
<td>100%</td>
<td>99.9%</td>
<td>99.9%</td>
</tr>
<tr>
<td>E = 10%</td>
<td></td>
<td>82.9%</td>
<td>82.7%</td>
<td>81.8%</td>
</tr>
<tr>
<td>E = 20%</td>
<td></td>
<td>61.6%</td>
<td>55.0%</td>
<td>56.8%</td>
</tr>
</tbody>
</table>

(b) Micro-level: percent of respondents classified correctly

Table 6
Elaboration of Customer Needs for a Full-Sized Maneuverable Pickup Truck

<table>
<thead>
<tr>
<th>Why I need a maneuverable pickup truck.</th>
<th>Why I need a full-sized pickup truck.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent city driving</td>
<td>Large passenger capacity. 73%</td>
</tr>
<tr>
<td>Tight parking</td>
<td>Large payloads. 50%</td>
</tr>
<tr>
<td>I make many U-turns</td>
<td>Full-sized style. 39%</td>
</tr>
<tr>
<td>Too many traffic jams</td>
<td></td>
</tr>
</tbody>
</table>
References

Appendix: Formal Derivation of Trigger Mechanism

The “listening-in” methodology uses a trigger mechanism to invoke the virtual engineer and design palette. We argue intuitively in the text that such a drop in the recommendation probability (Equation 1) is an indication that desired combinations of customer needs are not fulfilled by existing trucks. In this appendix we demonstrate with a formal analytical model that such a drop identifies opportunities. This issue is not trivial because a question bank, \(q \), affects, potentially, the updated utilities of each and every product in the market, not just the recommended product. The formal analysis identifies the net effects.

Although our application uses complex question banks for 148 trucks, we can illustrate the basic principles with \(N = 3 \) and a dichotomous question bank. (Our propositions generalize to analogs for larger \(N \) and for polychotomous question banks, but the notation is cumbersome.) Following the text, let \(j \) index the vehicles. Without loss of generality, let \(v_i \) be the recommended product after question bank \(q-1 \). Let \(\mathbf{v}_j \) be those customer benefits (needs) that are not affected by question bank \(q \) and let \(\mathbf{y}_j \) be those customer benefits (needs) that are affected by question bank \(q \). In this formulation, price is treated as a characteristic and can be in either \(\mathbf{x}_j \) or \(\mathbf{y}_j \) (for motivation see Hauser and Urban (1996)). Following Blackorby, Primont and Russell (1975) we model preferences by a utility tree such that

\[
 u(x_j, y_j) = u_x(x_j) + u_y(y_j) + \varepsilon,
\]

where \(\varepsilon \) is a Gumbel-distributed error term that represents the uncertainty in utility due to question banks that have not yet been asked (or may never need to be asked). For simplicity we assume that trucks with \(\mathbf{y}_j = \mathbf{y}_{\text{good}} \) experience an increase in utility and trucks with \(\mathbf{y}_j = \mathbf{y}_{\text{bad}} \) experience a decrease in utility. (The dichotomous question bank reveals which customer benefits are desired.) We let \(v_2 \) be a surrogate for those products with desirable characteristics and \(v_3 \) be a surrogate for those products with undesirable characteristics (as revealed by question bank \(q \)). Based on McFadden (1974) we write the recommendation probabilities in more-fundamental utility-theory terms (\(V \) is the total number of vehicles).

\[
 P(v_j | \mathbf{r}_q, R_{q-1}) = \frac{e^{u_x(x_j) + u_y(y_j)}}{\sum_{m=1}^{V} e^{u_x(x_m) + u_y(y_m)}} = \frac{e^{u_x(x_j) + u_y(y_j)}}{e^{u_x(x_j) + u_y(y_m)} + e^{u_x(x_j) + u_y(y_{\text{good}})} + e^{u_x(x_j) + u_y(y_{\text{bad})}}}
\]

After question bank \(q \) two situations can occur. Either the recommended truck re-
mains v_i or the recommended truck becomes v_2. It cannot become v_3 because, even if $\frac{P_i}{P_{bad}} = \frac{P_i}{P_{good}}$, v_1 would still be preferred to v_3. Propositions 1 and 2 address the two situations. Together they indicate that, whenever the recommendation probability drops, an opportunity exists for a new, higher-utility truck with mixed characteristics.

Proposition 1. If the recommended truck after question bank q is the same truck as that recommended after question bank $q-1$, then v_i has undesirable characteristics ($\frac{P_i}{P_{bad}}$) if and only if $P(v_i | r_q, R_{q-1})$ decreases. If the probability decreases, a new truck with mixed characteristics has higher utility than the recommended truck. That new truck is not currently available in the marketplace.

Proposition 2. If the recommended truck after question bank q is different than the truck recommended after question bank $q-1$ and if the recommendation probability decreases, then v_i has undesirable characteristics ($\frac{P_i}{P_{bad}}$). A new truck with mixed characteristics has higher utility than the both the recommended truck after $q-1$ question banks and the recommended truck after q question banks. That new truck is not currently available in the marketplace.

Proofs. Straightforward algebra establishes that $P(v_i | r_q, R_{q-1}) - P(v_i | r_q, R_{q-1})$ is proportional to
$$e^{u_i(x_i)} + e^{u_i(y_i)} + e^{u_i(y_i)} - e^{u_i(x_i)} + u_i(y_i) + u_i(y_i) \geq 0 \text{ if } \frac{P_i}{P_{good}} = \frac{P_i}{P_{bad}}$$
and
$$0 \text{ if } \frac{P_i}{P_{good}} \leq \frac{P_i}{P_{bad}}.$$
Algebra also establishes that the proportionality (denominator) is positive. This establishes the first statement in Proposition 1 and also implies that $\frac{P_i}{P_{bad}}$ if the probability drops. Since $u_i(x_i) + u_i(y) > u_i(x_i) + u_i(y)$, a new product with x_i and y has higher utility. If the recommended truck changes after question bank q, then $P(v_1 | r_q, R_{q-1}) < P(v_2 | r_q, R_{q-1})$ and, because the recommendation probability decreases, we have $P(v_2 | r_q, R_{q-1}) < P(v_1 | R_{q-1})$. Thus $P(v_1 | r_q, R_{q-1}) < P(v_1 | R_{q-1})$ and, by Proposition 1, we have that $\frac{P_i}{P_{bad}}$. This establishes the first result in Proposition 2. Because v_i was recommended before question bank q, we have $u_i(x_i) > u_i(x_2)$ and by supposition we have $u_i(y) + u_i(y) > 0$, thus a product with the features, x_i and y, will have higher utility than either v_1 or v_2. This establishes the second result in Proposition 2. In both propositions we know that the new truck does not currently exist because, if it were available, it would higher utility and, hence, would have been recommended.
Generalizations. If there are n_2 trucks like v_2 and n_3 trucks like v_3, then the analogs to Propositions 1 and 2 are readily proven. The numbers n_2 and n_3 enter the equations for $P(v_1 | r_q, R_{q-1})$ - $P(v_1 | R_{q-1})$, but the basic proofs remain intact. If there are many trucks with P_{good} or P_{bad}, but with different x_j, the expressions for $P(v_1 | r_q, R_{q-1})$ - $P(v_1 | R_{q-1})$ include more terms, but each can be proven to have the correct sign – increases if P_{good} and decreases if P_{bad}. With these changes, the remaining portions of the proofs follow as above.

We use Equation 1 to make the proofs transparent. Both propositions can be generalized to other probability models with the appropriate characteristics. We leave the details of these generalizations to the reader.