Glen L. Urban

An Autobiographical Essay: When I Stop Learning, I Will Leave

Writing an autobiographical essay is both welcome and daunting. In putting these thoughts to paper, I reflect on the path taken and speculate on where it might yet lead me. I suspect that my experience is unique, and I am not sure that my experience will be for everyone to follow. Nevertheless, my hope is that in describing what worked for me, others may be stimulated in some way to find what works for them. As I reflect back on my career, I have no regrets and am happy with how it progressed—it has certainly been interesting, challenging, and rewarding.

In reflecting on artist Christo’s sculpture “wrapping” of the Pont Neuf Bridge in Paris, the director of the De Cordova Art Museum in Lincoln, Mass., stated that Christo’s work was an “art event” and not a real “sculpture” because it was only up for a few weeks. I met Christo shortly afterwards and asked him about this comment. He reaction was “nonsense,” the work was “real sculpture,” and the only reason it was up for such a short time was that the insurance for the installation cost him $200,000 a week. This indicates either that artists do not understand their own work or that their critics do not understand it. As a scholar, I may not be able to judge my own work. In this essay, I describe how I view my research. In doing so, I assume that I understand my own work. I hope I am not too close to it to miss the truth.

I begin by sketching out the area of my primary research—new product development. In doing this, I necessarily and incidentally touch on many of the events that influenced my development and career choices and the attributes of the research style that, in my view, have been critical to the success of my work. I close with a description of my current research plans.

Glen L. Urban is Professor of Management, Sloan School of Management, Massachusetts Institute of Technology.

Precipitating Events

I grew up in Wisconsin—the son of a man who believed that “work is a virtue.” Working in Dad’s business (Urban Steel Buildings) during the summers had a lasting effect on me. Working with the construction crew was hard, and the hours were long. Dad also let me try my hand in the office as a draftsman, cost estimator, and salesman. It was here that I had my first exposure to real marketing. Among other things, I learned how to sell by providing customer solutions (e.g., a roof guaranteed for 20 years against leaks) and by demonstration (e.g., a special pull rivet that forced aluminum roofing panels tightly together all the time). The product needed to reflect superior engineering and have a benefit for the consumer. We positioned our buildings as the highest quality product but also segmented the market with a “value-priced” line of steel buildings to counter low-cost competition. My intention was to go into Dad’s business. I believed that engineering and marketing were the critical skills I needed, so I went to University of Wisconsin for a bachelor’s degree in mechanical engineering and an MBA in marketing. I graduated in 1964. But the best laid plans sometimes do not work out.

In that same year, I enrolled in the marketing Ph.D. program at Northwestern. Phil Kotler was my advisor. After a year of core work, I needed to begin thinking about a thesis, and Phil got me involved with new product forecasting at Union Carbide Corporation. I began modeling the interaction effects of a new product on existing products and applied a simulation model to a new polyvinyl fluoride product Union Carbide was introducing. Thanks to Phil and a Union Carbide product manager, things fell into place, so that in the second year, I had a draft of my thesis. My wife and I typed it up (on mimeograph masters) and delivered it to the committee before strapping the skis on the car and heading for Aspen, Colo. On returning, we expected to spend another year on the thesis. (One committee member had asked me, “Are you going to turn your thesis in like this?” Fortunately, he was talking about the format of the tables, not the content.) But the thesis was accepted with minor revisions, and we began a quick and late job search.

Fortunately for us, Massachusetts Institute of Technology (MIT) was also late in hiring in 1966, and I was able to convince the hiring committee that there was a good fit between my management science and marketing interests and the MIT philosophy. I was warned by faculty that though MIT was not an easy place to earn tenure, “it was a good place to be from.” My response has been my touch-
stone ever since: “Fine, when I stop learning, I will leave. Perhaps they will ask me to leave before that happens, but it is worth a try.” Given the MIT opportunity, I did not go into Dad’s business. Dad always said he overeducated me by funding me through graduate school. In any case, I never did stop learning, and MIT did not ask me to leave, so here I am still. After 36 years, I must say that MIT has been a wonderful environment for my entrepreneurial style of research.

My Research

The past 35 years have been an exciting time for marketing science and for modeling new product decision support. The challenges of new product design, forecasting, risk management, and launch strategy have fostered a large set of creative and useful models. No need to summarize this literature here, but interested readers will find Design and Marketing of New Products (Urban and Hauser 1993) and other summaries (e.g., Green, Krieger, and Wind 2001; Ulrich and Eppinger 1995) useful.

My new product research proper began at the University of Wisconsin with my MBA thesis “Product Planning in the Aerospace Industry,” in which I described the new product processes and generalized a multistage decision sequence for the industry (see Urban 1964). I was fortunate enough to work directly with General Motors’ (GM’s) and 3M’s aerospace divisions. My doctoral thesis at Northwestern on industrial product life cycle forecasting was a modeling effort aimed at understanding interdependencies between new and existing products (see Urban 1966). Drawing on Monte Carlo simulation and chance-constrained programming techniques, I modeled the product line substitution and complementary effects Union Carbide faced in launching and pricing a new chemical product (Urban 1968). This thesis, along with a coauthored textbook that gave a state-of-the-art view of management science in marketing in the late 1960s (Montgomery and Urban 1969) set the stage for my 35 years of research.

After arriving at MIT, my initial research focused on the launch and test market phases but then began migrating to earlier stages, including premarket testing and design and opportunity identification. This development prompted my friend and colleague, Al Silk (Professor at MIT and subsequently Harvard Business School), to quip, “Urban’s research has been going backwards for many years.” Although this is true, I retain a research interest in all phases of the development process. Figure 1 positions my research efforts in the new product development decision process. Here, I give a stream-of-consciousness description of my efforts and then identify the critical issues in my approach to research.

Test Marketing

In the late 1960s, major new theoretical approaches were being developed in the field of stochastic models. Growing out of a contact with a summer session student from the Noxell Corporation (which sells Noxema and Cover Girl skin care products), I learned that forecasting national sales levels based on test market results, planning the best marketing mix for launch, and tracking test market and launch for diagnosis and control were important problems that were not being adequately addressed. This led to a sponsored research project at MIT and the development of a macro flow model methodology that combined elements of stochastic models, response functions, and empirical data in a managerial tool called “SPRINTER” for managing the new product test market and launch (Urban 1970). I was interested in discovering whether this model would really help managers, so I joined John Little and Len Lodish in a firm called Management Decision Systems Inc. Applications at Noxell and Nabisco helped refine the SPRINTER model and provided great case material for my articles and teaching.

During 1970, I spent a term visiting the Indian Institute of Management in Calcutta and became interested in the management of family planning. After returning to the United States, I began working with the Atlanta Area Family Planning Program and the Centers for Disease Control in an effort to improve the efficiency and effectiveness of their programs. My approach was to elaborate and extend the SPRINTER model and apply it to the trial and adoption of family planning (Urban 1974a). At that time, I had two master’s students (Ron O’Connor and Joel Lamstein) who were interested in implementing new management techniques in the public arena, so we formed a nonprofit firm called Management Science for Health. Although I am no longer involved with the company (or its spin-off, John Snow Inc.), it is gratifying to report that they now employ more than 600 people working to improve public health management worldwide.

Premarket Testing

In 1972, Cal Hodock, then market research director at Gillette, called me with an invitation to join him for lunch at
Loch Ober, a premier restaurant in Boston. I was somewhat surprised because usually I bought lunch for him, in hopes of garnering MIT-sponsored research funds from Gillette. During lunch, he told me Gillette was looking for a modeling and measurement system to forecast sales of a new product in test market, based on the pretest market availability of the product, packaging, and advertising. He wanted the research to cost (on an ongoing basis) less than $25,000 and the forecast to be delivered three months after the project started. On the basis of the complexities I had seen in test market tracking and forecasting, I told him it was impossible. He was persistent. In the end, he persuaded Al Silk and me to look at his problem by dangling $40,000 for sponsored research funds at MIT. How could we refuse? Gillette's need, combined with the emerging logit modeling technology at MIT (McFadden 1970), led us to develop a convergent premarket forecasting approach based on measured changes by two independent models: (1) preference change and (2) laboratory-simulated trial and repeat purchasing. The result was the ASSESSOR model for forecasting the sales of new packaged goods (Silk and Urban 1978), and over time its validation was based on Management Decision Systems applications (Urban and Katz 1983).

In parallel with the validation work on consumer packaged goods, I was pursuing the application of pretest market forecasting to consumer durables. This grew out of discussions with a student of mine (John Dables) who worked at the Buick division of GM. He told me that the risks involved in developing a new automobile product were much greater than those involved in developing a packaged goods new product, because the investment was so much larger. The whole picture was further complicated by the lack of test marketing for automobiles. The thought occurred to me, why not apply the ASSESSOR methodology to consumer durables? Our discussion led to a five-year Buick-sponsored research project at MIT, which resulted in a durbables ASSESSOR model and applications to premarket automobile forecasting based on an early production line version of the new automobile (Roberts and Urban 1988; Urban, Hauser, and Roberts 1990; Urban, Huttland, and Weinberg 1993). Good forecasting results were achieved, but top managers at GM argued that though our analysis could improve the launch, the forecast came too late in the process, because once the car existed in initial production line versions, the launch commitment was virtually assured. The costs were sunk, and on a marginal basis it was almost always profitable to go forward. This was forcefully brought home to me when we predicted in 1986 that the new downsized Buick Riviera sales would be half of the old level rather than the hoped-for doubling of sales. Buick introduced the car anyway. Although we were glad to have the opportunity for validation (sales dropped to .4 of the old level), we were indeed too late in the process to stop the program.

In the late 1980s, Hyper Card was developed at Apple, and MIT's Media Lab had invented the basic elements of surrogate travel. In 1990, we began an effort to use interactive multimedia to create a virtual automobile market of the future, before the new car was built. We put the customer in the future environment with full information and ability to control the search, and we measured responses to predict future sales before the production commitment was made. I called this "information acceleration" (IA). The first application was to electric vehicles at GM (Urban, Weinberg, and Hauser 1996), and on the basis of application and validation experience (Urban et al. 1997), the potential of this model and measurement methodology was encouraging. Initial field testing of the GM EV-I two-seat sports car was done at MIT with the IA model. The final forecasting was done during 1992–93 through a consulting firm called Marketing Insight Technology Inc., which I started with a few of my students to implement IA concepts. The forecasts, based on expanded proprietary surveys, were for low sales in the 1998–2000 period (fewer than 1000 units per year) and indicated that the real demand was for an economy car with a hybrid power system for reliability (an electric motor plus a small gas-powered generator). General Motors did not go into production with this vehicle but rather custom built units for sale in California and selected other locations. In 1999, the sales of the EV by GM were about 700 units, surprisingly close to the forecast, given the vagaries of this market. I was given permission to publish these results, so the results considerably strengthened the MIT initial research for publication. In 1999, I was at an American Marketing Association conference in San Diego and saw the Toyota Prius (a four-door hybrid electric vehicle) in the hallway and a sign announcing a presentation of the Prius development story. I was pleased to see that the Toyota product manager had used the IA, on the basis of my publications only, to forecast the sales of the Prius hybrid economy car and found a real market opportunity.

Design

As the seminal work on perceptual mapping was appearing in the 1970s, there seemed to be a natural fit to new product design. The notion of a "core benefit proposition" could be represented in the positioning and in a model called PERCEPTOR. I made an early attempt to link positioning to new product sales potential and extended this model for marketing of the MIT health maintenance organization (Hauser and Urban 1977; Urban 1975). I continued research on product design in an effort to integrate Von Hippel's lead user notions with market research methods (Urban and Von Hippel 1988) and apply it to industrial product (i.e., CAD/CAM systems for electronic printed circuit boards at Computer Graphics Inc.) innovation and diffusion from lead users to other customers. This theme has carried through to current research, in which I am putting lead users on an Internet design pallet to configure their ideal pickup trucks.

Opportunity Identification

Through the 1980s, I became convinced that marketers needed not only tools to help effectively forecast and design products but also tools to help identify strategic opportunities. My first project in this area focused on market definition. This returned me to my original interest in product lines and interdependency. I tried to define a hierarchical market structure that created segments in which intra-segment competition existed but inter-segment competition
was limited, so that little customer switching among segments occurred. This system was called PRODEGY and addressed PRODuct stratEGY by examining the coverage and duplication of a product line (Urban, Johnson, and Hauser 1984).

The second project grew out of the empirical experience I gained from applications of ASSESSOR. Contrary to the predictions of perceptual mapping models, I noticed that second brands in a market rarely received the same share as successful first entrants, even if they had parity positioning and allocated similar resource levels to advertising and promotion. This led to a statistical cross-sectional analysis of the effects of order of entry on market share (Urban et al. 1986). My coworkers and I confirmed this order-of-entry effect in a time-series cross-sectional analysis of test market scanner data (Kalyanaram and Urban 1992) and ethical pharmaceuticals (Berndt et al. 1995). Our work in this area was contemporaneous with the PIMS data analysis and led to interesting insights as the results were integrated into the growing literature on order of entry (Kalyanaram, Robinson, and Urban 1995).

Launch and Life Cycle Management

Recently, I returned to the topic I had begun with while at Northwestern—the life cycle phase. I have developed a set of concepts for trust-based marketing over the life cycle (Urban, Sultan, and Qualls 2000), in which the use of a virtual advisor on the Internet provides customers with full and accurate information and unbiased advice in a private, secure, branded, friendly, and easy-to-use system. This project grew out of a realization that my IA ideas could be used to help customers make better decisions on existing products, as well as test new products. Inverting IA gives a system that, when supplemented by a personal advisor, provides a trust-based marketing tool. Vince Barabba, Director of Market Planning at GM, encouraged me in this work and funded an MIT-sponsored research project. After developing a prototype, we tested it in the field by application with 300 customers to pickup truck purchasing. Initial results indicated substantial increases in trust, and presumably sales can be earned through the Internet virtual advisor. General Motors is now considering implementing such an advisor on one of its Internet sites.

Research Style

This chronology of my research indicates several threads I believe have been important in the success of my work. I briefly discuss some of these.

Managerial Need Input and Implementation

My research style is inductive, so I found it natural to work closely with managers making real decisions. I have always been impressed with the knowledge and insight managers accrue in facing tough decisions. As a marketer, I instinctively thought in terms of "customer needs" as I defined my customers for the analytic models I worked on as managers and tried to involve them early in the design of decision support models. In 1980, while I was reporting the results of a second PERCEPTOR study at Dow Corporation, the group product manager leaned over and said, "Tell us something we do not know this time." It was new to me, but old stuff to him. Coping with implementation problems gave me a growing awareness of decision needs, so my following projects could be better fitted to the changing managerial decision requirements. Building models and applying them should be considered an organizational change process, not an exercise in mathematical gymnastics (Urban 1974b; Urban and Karash 1971). As a result, implementation should be considered from the start of the project to beyond its academic completion if academics are to keep their research relevant and improve the practice of marketing.

Equally important, this manager orientation can help generate funds for research assistants, computers, software, and large databases. I have also found that real applications after publication are useful in assuring that models are used and that evolutionary model extensions can create a positive benefit–cost ratio for managers.

Sometimes I was involved with applications as a consultant, but more often I have worked within companies I have founded with my students. We founded these companies to implement the new technologies, and though it is nice to be economically successful, my real motivation was to change the practice of management. For example, ASSESSOR was implemented by Management Decision Systems (and subsequently by Information Resources Inc., which bought Management Decision Systems, and then by MARC, which bought the ASSESSOR business from Information Resources Inc.). But the Journal of Marketing Research publication (Silk and Urban 1978) on ASSESSOR was used by Research International Inc. and Novacton Inc. to build competitive services. My best estimate is that more than 3000 consumer packaged goods products have been tested by the ASSESSOR methodology and its derivatives. I doubt that ASSESSOR would ever have been applied without Management Decision Systems as a proving ground. Similarly, IA was implemented by Marketing Technology Interface, as well as by others (e.g., Toyota, Intel, various market research companies), on the basis of the Journal of Marketing Research publications (Urban et al. 1996; Urban, Weinberg, and Hauser 1997). My role in these companies was limited to less than one day per week, but this was enough to help design the implementation procedures, interact with clients on design issues, and identify new research opportunities. Overall, my intent has been to build new decision tools that reflect customer needs and result in better products and reduced risk in new product innovation.

Matching Needs to Theory

Interacting with managers has been important to me to understand their needs. However, successful research also requires matching these needs to emerging theories and methods. When the two are in sync, the ensuing research can advance the state-of-the-art of marketing science as well as affect practice. Whether it is logit modeling, multidimensional scaling, utility theory, artificial intelligence, or virtual reality, I have always looked for problems that lend themselves to analysis through the most recent management and behavioral science technologies. I view this matching of theory to practice as a creative process.

Book Reviews / 121
Not all problems are interesting academically. Pure application projects may be useful but lie in the consulting domain. Pure theory can be important work, but I have tended to examine problems that require application of the latest theory. I think this tendency reflects my engineering training. However, I have often found that modeling requires both theory extension and innovation in estimation. For example, ASSESSOR came from Gillette’s managerial problem, but the solution was in the then–new logit analysis. When logit was first applied, McFadden (1970) was just developing the maximum likelihood algorithms. I believe that ASSESSOR was the first application in the marketing of logit analysis. This theory enabled us to develop a new convergent forecasting methodology for premarket analysis. Similarly, when modeling the problem of premarket forecasting of new automobile sales, multiattribute utility theory was used and extended as a modeling framework (Roberts and Urban 1988). My recent work to develop trust on the Internet uses artificial intelligence theory to build a trusted advisor for automobile purchasing (Urban, Sultan, and Qualls 2000).

Power of Empirical Data

I have been a heavy user of measurement and empirical data. Whether it be test market, laboratory simulation, survey, market experiments, or virtual reality data, I have felt compelled to measure customer response. I have also been diligent in testing my model predictions. This is a difficult validation process but a critical one if marketing science is to progress. Often, these empirical efforts require creativity and innovation in measurement methodology and persistence in obtaining response and validation data, but the research power gained is well worth the effort.

Research Risks

A sense of adventure, entrepreneurship, and intellectual flexibility has served me well in my efforts to match theory with managerial relevance. I have generally avoided small epsilon extensions of existing work in favor of major problems that have not been extensively studied. This is ambitious and risky, because such innovative work takes a long time—especially if it is empirically based. Reviewers may not always understand the value of the new work, or else they find many methodological problems that can only be resolved by further research. Articles may be rejected or may need to be revised and aggressively defended. But some of them may win prizes. As I see it, the low-risk way to publication is to extend previous work in a field. When this is the case, previous contributors are usually (and naturally) chosen as reviewers, and they find it easier to understand and accept the extension, even if it is not a major breakthrough. Certainly, this evolutionary research path has moved the field forward. However, it is not my style. I like to find the big problems managers face and see if I can solve them. In this effort, I have often found that the literature constrains my thinking. As a result, I often work on a problem for months before reading the existing literature and modify my efforts to profit from prior research. It is a balance between creativity and constraint. Existing theory should be used, but for me the drivers are the problem and creativity rather than the placement the new work in the structure of the existing publication stream.

Programmatic Research

I am a research planner. My method is to lay out my research intentions over one- and five-year time horizons and examine how they fit into the accomplishment of my overall research goal—improving the productivity of new product development and advancing the art of marketing science. This sometimes calls for long-term projects—most of my models have a five-year or longer development time frame. (For example, ASSESSOR was started in 1973 and published in 1978, IA was started in 1990 and published in 1996 and 1997, and trust-based marketing was started in 1996 and published in 2000.) This may not maximize the number of publications, but those that do come out the end of the pipeline can be significant. Fortunately, MIT has been patient and has tenure criteria that do not depend solely on the amount of publication.

Balance

Real academic success requires that we balance research, teaching, and administration. My annual plans have always incorporated activities from each of these areas. Most often, for me, the one that slips is research. Academics need to be disciplined to keep research priority high. The demand for high-quality teaching has continually risen over time. To help cope with this, I have tried to tie my teaching to my research to make the most efficient use of my time. For example, Dave Montgomery and I taught a marketing modeling course based on our book Management Science in Marketing (1969). In many ways, that course was the foundation for my future modeling. I taught the first new product marketing and development course at MIT. This was synergistic with my ASSESSOR research and led to the development of teaching materials such as a textbook with John Hauser titled Design and Marketing of New Products (1993). When my focus became more strategic, I found that teaching marketing strategy and coauthoring a text and case book with Steve Star, Advanced Marketing Strategy (Urban and Star 1991), helped me understand and teach the wider context of marketing and analytical support. The secret for me is balancing activities and building synergy.

In administration, I served as deputy dean (1987–91) and then dean at MIT Sloan (1993–98). These were the most difficult times for me to achieve balance. I found as dean that I could continue research work (e.g., IA, trusted advisors on the Internet) I started before taking on the dean’s responsibilities, but it was difficult to start new projects. The compensating benefit was that I learned a lot about operational management, gained a wider understanding of other fields of management, and was exposed to a wide array of interesting academics and top managers. It was clear in 1998, however, that I needed to choose between becoming a full-time administrator and a researcher/teacher. I chose the latter, but I am confident that the experience in the dean’s office will make me a better teacher and give me a wider perspective on research. A sabbatical between each of the
two administrative positions was critical to rebalancing and energizing my research activity.

Another critical balance is between work and personal time allocations. The academic tenure system will push a professor so that it is difficult to have a life outside of work. I have found that it is critical to have a balance among work, family, and personal time. My wife Andrea recognized this problem early and signed me up for a sculpture course in 1970 at the local art museum. I enjoyed the class, and sculpture became a major hobby for me. I do mostly large steel and bronze work, but some stone and wood carving. I have more than 50 pieces in my yard and house. It is rewarding to come home from school to see the tangible results of cutting and welding steel for a couple hours, rather than the almost invisible results of daily research. Only after a long and frustrating period of research, writing, and revising is an article published. For me, sculpture provides unconstrained and immediate results. In addition, I believe sculpture has helped my research. Building a mathematical model taps the same sort of creative energy I find necessary in abstract sculpture. I have enjoyed sculpture, skiing, and sailing, but in retrospect I have put too much time into my work. If I had it to do over, I would put in fewer hours at MIT and more at home with my family. This would have been easier if the work had not been so exciting.

Great Coauthors

Good coauthors are an intellectual inspiration, and I have had some of the best. I am greatly indebted to them. I must acknowledge John Hauser (who has written more joint articles with me than anyone) for his rigor, scholarly standards, tight writing, and creative input. I have also benefited greatly from my other academic coauthors, including but not limited to Montgomery, Silk, Von Hippel, Star, Robinson, Berndt, Qualls, and Sultan (in chronological order of publication). It is also important to recognize my student coauthors, who have probably received less credit than they deserve for their input (e.g., Weinberg, Kalyanaram, Bohlin, Hulland, Roberts, Carter, Gaskin, Mucha, Johnson, Katz, and Karash, in reverse chronological order). Although I have generally not coauthored with line managers who have contributed to my work, special contributions were made by several of them (e.g., Ed Sellars of Nocoll, Cal Hodock of Gillette, Tom Hatch of Miles Labs, John Dables of Buick, Roberta Chicos of MTI, and Sean McNamara and Vince Barabba of GM). Finally, John Little has been my mentor, and even though we have never coauthored a major article, he influenced every one of my works through his example, comments, and criticisms. John is a straight-thinking, rigorous scholar who believes in research paying off in practice.

My Future Plans

My current five-year research plan calls for extensions to my new product modeling and a major thrust toward developing models to exploit the potential of the Internet for marketing managers.

My work on trust-based advisors raises a challenge for managers. If trust-based marketing involves fair comparison between alternatives, what does a firm do if its products are not the best available? One solution is to back off of trust and push what you have. A better long-term solution is to find unmet needs and build the highest quality products to fill those needs. In my trust work, we applied the virtual advisor to pickup trucks, so it was natural with GM’s research support to extend the research to discover whether we could “listen in” to the dialogue between the advisor and the real customer to find unmet needs. We applied utility theory to identify the most preferred truck and the level of utility. We posited that if the utility of the most preferred truck goes down after a question in the dialogue, this indicated an unmet need. For example, if a consumer wants a small truck, the Mazda might be the most preferred. After the consumer indicates that he or she wants to tow a boat, the Chevrolet Blazer may be the most preferred, but the utility is likely to have gone down. This drop indicates the need for a small truck that can tow. This unmet need is explored by a virtual engineer who asks the customer for details about the need (e.g., How much does the boat weigh? Why do you want a small truck? For gas efficiency? Parking?). This virtual engineer provides detailed input to the platform design team. A final component in this analysis is to put the customers on a design pallet and let them specify any truck they want (e.g., a mid-sized truck that can tow 6000 pounds and still be easily parked). This system has been estimated on the basis of 1000 customer interviews; the results indicate that it can identify significant new opportunities and the need-identification algorithms are robust (Urban and Hauser 2002).

The Internet is a risky area for research, because it is so volatile and we do not have much research banked in this area, but I believe that it will be a major additional channel for marketers in the future. Currently with the support of the Inter Public Group, my colleagues (Fareena Sultan, Venky Shankar, and Jakov Bart) and I are analyzing 6800 consumer evaluations of 24 leading Internet sites to find the determinants of trust on the basis of 120 cue assessments (e.g., security, privacy, personalization, information, navigation, advice, brand). This empirical analysis will supply understanding to enable effective experimentation of site design and consistency with other communication channels. We have begun experiments on the Internet to test the nature of trust-building in a site. This work is funded by Intel, and I hope in the next several years, in collaboration with others in the MIT marketing group (John D.C. Little, John Hauser, and Duncan Simester), to extend it to full adaptive marketing. We plan to draw on reinforcement learning (Sutton and Barto 1998). I also would like to study the use of the Internet as a direct manufacturer sales channel, complementary to the existing distribution system (e.g., Palm sells direct at the same price as through existing retail stores). Finally, I plan to study the implications of increasing customer power and the paradigm shift from push to trust-based marketing that this may precipitate.

The future is full of exciting marketing opportunities, and if we can effectively integrate theory, practice, empirical data, and creativity in research, we can improve the efficiency and effectiveness of marketing.

Book Reviews / 123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
REFERENCES

