Innovation, Components, and Complements

Hal R. Varian
UC Berkeley
May 2005
Overview

- What can we learn from history?
 - Technology revolutions
 - Nature of innovation
 - Business problems
 - Policy problems
Stylized facts about innovation

- Importance of *simultaneous innovation*
- Critical role of
 - Components
 - Complements
 - Standards
- These forces are still active today
Simultaneous innovation

- Historical
 - Howe/Singer …
 - Edison/Swan …
 - Bell/Gray …

- Recent
 - Digital computer
 - Personal computer
 - Dot coms
Why simultaneous innovation?

- Demand side
 - Recognized problem and/or need
 - Problem seems solvable

- Supply side
 - Standardized components
 - Parallel experimentation
 - “Combinatorial innovation”
 - Development of complements (before, after, during initial innovation)
Examples

- **Historical**
 - Standardized parts in the 1800s
 - Edison Menlo Park laboratory
 - Wright Brothers in early 1900s

- **Recent**
 - Integrated circuit
 - Web components
 - TCP/IP, HTML, HTTP, CGI, forms, menus, etc.
 - Particularly rapid innovation due to…
Components and complements

- **Components**
 - Standardized interface, ubiquitous, cheap
 - Often developed for some other purpose
 - Part of a more complex system
 - Examples: screws, chips, TCP/IP, etc.

- **Complements**
 - Value to user depends on entire system: DVD player+disks, autos+gasoline, hardware+software
 - Often components assembled by manufacturer, complements assembled by user (but many exceptions)
Complements

- Supply side: cheaper to produce one product if also produce other
 - Economies of scale: decreasing unit costs
 - Economies of scope: shared facility (software)

- Demand side: value of one product is enhanced by other
 - Scope: hamburger+catsup, VCR+tapes
 - Scale: fax machine+fax machine

- Book to read (in addition to *InfoRules*): Brandenburger and Nalebuff: *Co-opetition*
Consumption complements

- Complementary products: value to user depends on whole system
 - Radio/TV + content
 - DVD player + disks
 - CPU + hard drives

- Fundamental questions
 - How is coordination accomplished?
 - Chicken and egg problem with new system
 - Technology evolution with existing system
 - Who does “system integration”?
 - How to divide value up among complementors?
Examples from Silicon Valley

- Question about coordination
 - 3Com: “must align with others”
 - Adobe: works with printers, integrators, VARs, CPU manufacturers
 - Juniper: other network manufacturers, other layers
 - Seagate: “drives are always part of a larger system”
- Moore’s Law as coordination device to avoid bottlenecks for technology treadmill?
Working with complementors

- Two sorts of problems
 - Coordination
 - All parties have same objectives, major problem is in organization and management
 - Incentives
 - Different objectives lead to working at cross-purposes
 - Normal case is a mixture of two problems
Pure coordination problems

- A natural leader emerges
 - E.g., a system integrator, or someone who controls a standard or bottleneck
 - Extremely powerful position
 - IBM System 360
 - Microsoft/Intel “gift from IBM”

- One side absorbs other (merge or acquire)
 - But can be hard to succeed due to differences in competencies
 - Sony/Columbia example
 - AOL-Time Warner
Coordination technology

- Coordination is easier now because of technology
 - Fax, email, attachments, intranet, etc. Pixar database.
- Impact on boundaries of firm?
 - Lower communication cost means...
 - Easier to coordinate across firms
 - But also easier to coordinate within a firm (Alfred Chandler)
- High-powered incentives across separate firms
 - Everybody likes competition among suppliers more than internal monopolies
 - But what if the external supplier is a monopolist?
 - Market structure (determined by economies of scale) dominate communications costs as determinant of outsourcing
 - E.g. IBM sale of Global Networks to AT&T vs Windows OS
Incentive problems

- Two problems (among many)
 - Price/quality choices
 - Holdup

- Other problems for some other time
 - Channel conflict
 - Information sharing
Example: pricing

- Two components to system, e.g., hardware/software
- Cut price of hardware, increases sales of software and vice versa
- Not necessarily taken into account in price-setting calculation by single firm
- Result: system price is too high, *both* companies benefit from both reducing price
 - Consumers benefit too
 - Coordinating prices of complements is a win all the way around!
Pricing complements (detail)

- Value to user depends on all components
 - Left shoe + right shoe, hardware + software + service, DVD player + disks
- So demand depends on sum of prices
- Revenue to firm 1 = \(p_1 D(p_1 + p_2) \)
 - Cutting your price *may* raise revenue
 - Both cutting prices raises revenue for each
 - Other firm cutting its price raises your revenue the most! How to do this? See next slide…
- Big win to coordinating “quality” as well
 - Quality of system may depend on \(\min(q_1, q_2) \), as in a network
Solution: ways to cut complement’s price

- Integrate: set price yourself
- Collaborate: e.g., revenue sharing
- Negotiate: I’ll cut mine if you cut yours
- Nurture: work with them to lower costs
- Commoditize: make their industry more competitive
Cut complement’s price: integrate and negotiate

- **Integrate**
 - One firm sells both hardware and software (e.g., ethernet cards and drivers)
 - May be important for quality reasons (IBM, Sun)
 - Problems
 - Complexity management challenge
 - Core competency

- **Negotiate**
 - DVD Forum: negotiated to push prices down.
 Licensing core patents.
 - Note: Antitrust implications. But coordination of prices is a win for both consumers and producers.
Cut complementor’s price: collaborate

- Revenue sharing
 - Blockbuster “guaranteed in stock”
 - Purchase v rev share contract
 - Role of IT in providing transaction monitoring

- Outcome
 - Distributor, video store, consumers all better off

- IBM example of partnerships with applications software companies
Aside on “computer mediated contracts”

- Revenue sharing etc. may become much more widely used due to cheap monitoring devices (RFID, cash registers, etc)
 - Supermarket rev share with vendors
 - Rental car speed detection
 - Truck EVM systems
 - Wal-Mart RFID

- Contract provisions depend on monitoring costs: cheaper monitoring usually means better contracts [“Can’t manage what you can’t monitor.”] Can’t contract on it either.
Another example: Real-time marketing

- “Half of my advertising budget is wasted, I just don’t know which half…”
- Google “pay per click” pricing
 - Real time feedback from marketing campaigns
- Ad campaign monitoring with Web activity
- Tivo/Replay ad feedback
- Marketing will become much more high-tech and quantitative in future…
 - Quants move from Wall Street to Madison Avenue
Cut complement’s price: nurture

- Improve quality of complements
 - Microsoft Windows Hardware Quality Labs
 - Cisco Certified Internetwork Expert
 - Auto industry working with suppliers/complementors

- Push costs of complementors down
 - Help them to standardize
 - Communicate efficiently with them
 - Supply chain management, etc.
Cut complement’s price: commoditize

Hardware maker wants cheap software, software maker wants cheap hardware

How to achieve?
- Push for standards in complementor’s industry
- Encourage competition
 - Enter yourself to jump start industry
 - Take minority investments to maintain involvement
- Recent example: Intel and WiFi [commodity biz]

Examples
- Early history of radio, RCA, AT&T
- Wintel: “extraordinarily productive, necessarily tense”
Problem: hold-up

- One complementor may try to hold up the other (put them in a position where they have no choice and extort more value)
 - Unilaterally raise price of critical component
 - Assert intellectual property rights on key component
 - “Lowball the bid and make it up on change orders”
Solutions to hold up

- Contracts
 - But there are negotiation/verification costs
- Commitment device
 - Posting a bond
- Dispute resolution procedures
 - Binding arbitration
- Second sourcing
 - Creates competition
- Repeated interaction
- Reputation
The End

...and thanks for your attention